Merge pull request #1 from echo840/main

v_1.0
This commit is contained in:
Yuliang Liu
2023-05-17 12:20:43 +08:00
committed by GitHub
32 changed files with 145202 additions and 0 deletions

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

0
datasets/__init__.py Normal file
View File

Binary file not shown.

Binary file not shown.

Binary file not shown.

0
datasets/kie_dataset.py Normal file
View File

22
datasets/ocr_dataset.py Normal file
View File

@@ -0,0 +1,22 @@
from torch.utils.data import Dataset
import os
class ocrDataset(Dataset):
def __init__(
self,
image_dir_path= "./data/ocr",
dataset_name = "ct80"
):
self.image_dir_path = image_dir_path
self.dataset_name = dataset_name
file_path = os.path.join(image_dir_path, f'{dataset_name}/test_label.txt')
file = open(file_path, "r")
self.lines = file.readlines()
def __len__(self):
return len(self.lines)
def __getitem__(self, idx):
image_id = self.lines[idx].split()[0]
img_path = os.path.join(self.image_dir_path,f'{self.dataset_name}/{image_id}')
answers = self.lines[idx].split()[1]
return {
"image_path": img_path,
"gt_answers": answers}

103
datasets/vqa_dataset.py Normal file
View File

@@ -0,0 +1,103 @@
from torch.utils.data import Dataset
import os
import json
class textVQADataset(Dataset):
def __init__(
self,
image_dir_path= "./data/textVQA/train_images",
ann_path= "./data/textVQA/TextVQA_0.5.1_val.json"
):
self.data = json.load(open(ann_path, "r"))["data"]
self.image_dir_path = image_dir_path
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
question = self.data[idx]['question']
answers = self.data[idx]['answers']
img_path = os.path.join(self.image_dir_path, f"{self.data[idx]['image_id']}.jpg")
return {
"image_path": img_path,
"question": question,
"gt_answers": answers}
class docVQADataset(Dataset):
def __init__(
self,
image_dir_path= "./data/docVQA/val",
ann_path= "./data/docVQA/val/val_v1.0.json",
):
self.data = json.load(open(ann_path, "r"))["data"]
self.image_dir_path = image_dir_path
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
question = self.data[idx]['question']
answers = self.data[idx]['answers']
img_path = os.path.join(self.image_dir_path, self.data[idx]['image'])
return {
"image_path": img_path,
"question": question,
"gt_answers": answers}
class ocrVQADataset(Dataset):
def __init__(
self,
image_dir_path= "./data/ocrVQA/images",
ann_path= "./data/ocrVQA/dataset.json",
):
self.image_list = []
self.question_list = []
self.answer_list = []
dataset = json.load(open(ann_path, "r"))
import pdb;pdb.set_trace()
for idx, data in enumerate(dataset):
questions = dataset[data]['questions']
for index, question in enumerate(questions):
image_file = os.path.join(image_dir_path, f'{data}.jpg')
gt_answers = dataset[data]['answers'][index]
self.image_list.append(image_file)
self.answer_list.append(gt_answers)
self.question_list.append(question)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
question = self.question_list[idx]
answers = self.answer_list[idx]
img_path = self.image_list[idx]
return {
"image_path": img_path,
"question": question,
"gt_answers": answers}
class STVQADataset(Dataset):
def __init__(
self,
image_dir_path= "./data/STVQA",
ann_path= "./data/STVQA/train_task_3.json",
):
self.image_list = []
self.question_list = []
self.answer_list = []
data = json.load(open(ann_path, "r"))
for i in range(len(data)):
image_path = image_dir_path+'/'+data['data'][i]['dataset']+'/'+data['data'][i]['file_name']
self.image_list.append(image_path)
self.answer_list.append(data['data'][i]['answers'])
self.question_list.append(data['data'][i]['question'])
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
question = self.question_list[idx]
answers = self.answer_list[idx]
img_path = self.image_list[idx]
return {
"image_path": img_path,
"question": question,
"gt_answers": answers}

440
eval.py Normal file
View File

@@ -0,0 +1,440 @@
import argparse
#from models.BLIP2.BLIP2 import BLIP2
import more_itertools
from tqdm import tqdm
import datetime
import os
import json
import re
from datasets.vqa_dataset import textVQADataset, docVQADataset, ocrVQADataset, STVQADataset
from datasets.ocr_dataset import ocrDataset
from models.lavis.lavis import lavis
import torch
import numpy as np
def get_model(args):
if args.model_name=='BLIP2':
#model = BLIP2(args.BLIP2_model_path, args.device)
model = lavis(args.BLIP2_model_name, args.BLIP2_model_type, args.device)
#elif args.model_name=='mPLUG-Owl':
# model =
return model
def has_word(sentence, word):
pattern = r"\b" + re.escape(word) + r"\b"
match = re.search(pattern, sentence)
if match:
return True
else:
return False
def remove_special_chars(s):
pattern = r"[^a-zA-Z0-9\s]"
s = re.sub(pattern, "", s)
return s
class VQAEval:
def __init__(self):
self.contractions = {
"aint": "ain't",
"arent": "aren't",
"cant": "can't",
"couldve": "could've",
"couldnt": "couldn't",
"couldn'tve": "couldn't've",
"couldnt've": "couldn't've",
"didnt": "didn't",
"doesnt": "doesn't",
"dont": "don't",
"hadnt": "hadn't",
"hadnt've": "hadn't've",
"hadn'tve": "hadn't've",
"hasnt": "hasn't",
"havent": "haven't",
"hed": "he'd",
"hed've": "he'd've",
"he'dve": "he'd've",
"hes": "he's",
"howd": "how'd",
"howll": "how'll",
"hows": "how's",
"Id've": "I'd've",
"I'dve": "I'd've",
"Im": "I'm",
"Ive": "I've",
"isnt": "isn't",
"itd": "it'd",
"itd've": "it'd've",
"it'dve": "it'd've",
"itll": "it'll",
"let's": "let's",
"maam": "ma'am",
"mightnt": "mightn't",
"mightnt've": "mightn't've",
"mightn'tve": "mightn't've",
"mightve": "might've",
"mustnt": "mustn't",
"mustve": "must've",
"neednt": "needn't",
"notve": "not've",
"oclock": "o'clock",
"oughtnt": "oughtn't",
"ow's'at": "'ow's'at",
"'ows'at": "'ow's'at",
"'ow'sat": "'ow's'at",
"shant": "shan't",
"shed've": "she'd've",
"she'dve": "she'd've",
"she's": "she's",
"shouldve": "should've",
"shouldnt": "shouldn't",
"shouldnt've": "shouldn't've",
"shouldn'tve": "shouldn't've",
"somebody'd": "somebodyd",
"somebodyd've": "somebody'd've",
"somebody'dve": "somebody'd've",
"somebodyll": "somebody'll",
"somebodys": "somebody's",
"someoned": "someone'd",
"someoned've": "someone'd've",
"someone'dve": "someone'd've",
"someonell": "someone'll",
"someones": "someone's",
"somethingd": "something'd",
"somethingd've": "something'd've",
"something'dve": "something'd've",
"somethingll": "something'll",
"thats": "that's",
"thered": "there'd",
"thered've": "there'd've",
"there'dve": "there'd've",
"therere": "there're",
"theres": "there's",
"theyd": "they'd",
"theyd've": "they'd've",
"they'dve": "they'd've",
"theyll": "they'll",
"theyre": "they're",
"theyve": "they've",
"twas": "'twas",
"wasnt": "wasn't",
"wed've": "we'd've",
"we'dve": "we'd've",
"weve": "we've",
"werent": "weren't",
"whatll": "what'll",
"whatre": "what're",
"whats": "what's",
"whatve": "what've",
"whens": "when's",
"whered": "where'd",
"wheres": "where's",
"whereve": "where've",
"whod": "who'd",
"whod've": "who'd've",
"who'dve": "who'd've",
"wholl": "who'll",
"whos": "who's",
"whove": "who've",
"whyll": "why'll",
"whyre": "why're",
"whys": "why's",
"wont": "won't",
"wouldve": "would've",
"wouldnt": "wouldn't",
"wouldnt've": "wouldn't've",
"wouldn'tve": "wouldn't've",
"yall": "y'all",
"yall'll": "y'all'll",
"y'allll": "y'all'll",
"yall'd've": "y'all'd've",
"y'alld've": "y'all'd've",
"y'all'dve": "y'all'd've",
"youd": "you'd",
"youd've": "you'd've",
"you'dve": "you'd've",
"youll": "you'll",
"youre": "you're",
"youve": "you've",
}
self.manualMap = {
"none": "0",
"zero": "0",
"one": "1",
"two": "2",
"three": "3",
"four": "4",
"five": "5",
"six": "6",
"seven": "7",
"eight": "8",
"nine": "9",
"ten": "10",
}
self.articles = ["a", "an", "the"]
self.periodStrip = re.compile("(?!<=\d)(\.)(?!\d)")
self.commaStrip = re.compile("(\d)(\,)(\d)")
self.punct = [
";",
r"/",
"[",
"]",
'"',
"{",
"}",
"(",
")",
"=",
"+",
"\\",
"_",
"-",
">",
"<",
"@",
"`",
",",
"?",
"!",
]
def evaluate(self, answer, gt_answers):
answer = answer.replace("\n", " ")
answer = answer.replace("\t", " ")
answer = answer.strip()
answer = self.processPunctuation(answer)
answer = self.processDigitArticle(answer)
if type(gt_answers)==list:
for i in range(len(gt_answers)):
gt_answers[i] = gt_answers[i].replace("\n", " ")
gt_answers[i] = gt_answers[i].replace("\t", " ")
gt_answers[i] = gt_answers[i].strip()
gt_answers[i] = self.processPunctuation(gt_answers[i])
gt_answers[i] = self.processDigitArticle(gt_answers[i])
if has_word(answer, gt_answers[i]):
return 1
return 0
else:
gt_answers = gt_answers.replace("\n", " ")
gt_answers= gt_answers.replace("\t", " ")
gt_answers = gt_answers.strip()
gt_answers = self.processPunctuation(gt_answers)
gt_answers = self.processDigitArticle(gt_answers)
if has_word(answer, gt_answers[i]):
return 1
else:
return 0
def processPunctuation(self, inText):
outText = inText
for p in self.punct:
if (p + " " in inText or " " + p in inText) or (
re.search(self.commaStrip, inText) != None
):
outText = outText.replace(p, "")
else:
outText = outText.replace(p, " ")
outText = self.periodStrip.sub("", outText, re.UNICODE)
return outText
def processDigitArticle(self, inText):
outText = []
tempText = inText.lower().split()
for word in tempText:
word = self.manualMap.setdefault(word, word)
if word not in self.articles:
outText.append(word)
else:
pass
for wordId, word in enumerate(outText):
if word in self.contractions:
outText[wordId] = self.contractions[word]
outText = " ".join(outText)
return outText
def evaluate_VQA(
model,
dataset,
model_name,
dataset_name,
time,
batch_size=1,
answer_path='./answers'
):
predictions=[]
for batch in more_itertools.chunked(
tqdm(dataset, desc="Running inference"), batch_size
):
batch = batch[0]
output = model.generate(image=batch['image_path'], question=batch['question'])
answer_dict={'question':batch['question'], 'answer':output,
'gt_answers':batch['gt_answers'], 'image_path':batch['image_path'],
'model_name':model_name}
predictions.append(answer_dict)
answer_dir = os.path.join(answer_path, time)
os.makedirs(answer_dir, exist_ok=True)
answer_path = os.path.join(answer_dir, f"{dataset_name}.json")
with open(answer_path, "w") as f:
f.write(json.dumps(predictions, indent=4))
eval = VQAEval()
correct = 0
num = 0
with open(answer_path, 'r') as f:
dict = json.load(f)
for i in range(len(dict)):
gt_answers = dict[i]['gt_answers']
answer = dict[i]['answer']
if eval.evaluate(answer,gt_answers)==1:
correct+=1
num+=1
print(f'{dataset_name}:{float(correct)/num}')
return float(correct)/num
def evaluate_OCR(
model,
dataset,
model_name,
dataset_name,
time,
question='what is written in the image?',
batch_size=1,
answer_path='./answers'
):
predictions=[]
for batch in more_itertools.chunked(
tqdm(dataset, desc="Running inference"), batch_size
):
batch = batch[0]
output = model.generate(image=batch['image_path'], question=question)
answer_dict={'question':question, 'answer':output,
'gt_answers':batch['gt_answers'], 'image_path':batch['image_path'],
'model_name':model_name}
predictions.append(answer_dict)
answer_dir = os.path.join(answer_path, time)
os.makedirs(answer_dir, exist_ok=True)
answer_path = os.path.join(answer_dir, f"{dataset_name}.json")
with open(answer_path, "w") as f:
f.write(json.dumps(predictions, indent=4))
correct = 0
num = 0
with open(answer_path, 'r') as f:
dict = json.load(f)
for i in range(len(dict)):
gt_answers = dict[i]['gt_answers']
answer = dict[i]['answer']
gt_answers = remove_special_chars(gt_answers).lower()
answer = remove_special_chars(answer).lower()
if has_word(answer, gt_answers):
correct+=1
num+=1
print(f'{dataset_name}:{float(correct)/num}')
return float(correct)/num
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
#OCR datasets
parser.add_argument("--ocr_dir_path", type=str, default="./data")
parser.add_argument("--ocr_dataset_name", type=str, default="IIIT5K svt IC13_857 IC15_1811 svtp ct80 cocotext ctw totaltext HOST WOST WordArt")
#textVQA
parser.add_argument("--textVQA_image_dir_path", type=str, default="./data/textVQA/train_images")
parser.add_argument("--textVQA_ann_path", type=str, default="./data/textVQA/TextVQA_0.5.1_val.json")
#docVQA
parser.add_argument("--docVQA_image_dir_path", type=str, default="./data/docVQA/val")
parser.add_argument("--docVQA_ann_path", type=str, default="./data/docVQA/val/val_v1.0.json")
#ocrVQA
parser.add_argument("--ocrVQA_image_dir_path", type=str, default="./data/ocrVQA/images")
parser.add_argument("--ocrVQA_ann_path", type=str, default="./data/ocrVQA/dataset.json")
#STVQA
parser.add_argument("--STVQA_image_dir_path", type=str, default="./data/STVQA")
parser.add_argument("--STVQA_ann_path", type=str, default="./data/STVQA/train_task_3.json")
#result_path
parser.add_argument("--answer_path", type=str, default="./answers")
parser.add_argument(
"--eval_textVQA",
action="store_true",
default=False,
help="Whether to evaluate on textVQA."
)
parser.add_argument(
"--eval_docVQA",
action="store_true",
default=False,
help="Whether to evaluate on docVQA."
)
parser.add_argument(
"--eval_ocrVQA",
action="store_true",
default=False,
help="Whether to evaluate on ocrVQA."
)
parser.add_argument(
"--eval_STVQA",
action="store_true",
default=False,
help="Whether to evaluate on STVQA."
)
parser.add_argument(
"--eval_ocr",
action="store_true",
default=False,
help="Whether to evaluate on ocr."
)
#BLIP2
#parser.add_argument("--BLIP2_model_path", type=str, default="/home/zhangli/GPT4/BLIP2-flant5")
parser.add_argument("--BLIP2_model_name", type=str, default="blip2_opt")#blip2_t5 blip2_opt blip2_vicuna_instruct
parser.add_argument("--BLIP2_model_type", type=str, default="pretrain_opt6.7b")#pretrain_flant5xxl pretrain_opt6.7b vicuna13b
parser.add_argument("--model_name", type=str, default="BLIP2")#mPLUG,miniGPT4,LLaVA
parser.add_argument("--device", type=str, default="cuda:2")
args = parser.parse_args()
return args
def main(args):
np.random.seed(0)
max_sample_num = 5000
model = get_model(args)
'''ocr_dataset_name=['IIIT5K','svt','IC13_857','IC15_1811','svtp','ct80',
'cocotext','ctw','totaltext','HOST','WOST','WordArt']'''
ocr_dataset_name = args.ocr_dataset_name.split()
result = {}
time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
if args.eval_textVQA:
dataset = textVQADataset(args.textVQA_image_dir_path, args.textVQA_ann_path)
acc = evaluate_VQA(model, dataset, args.model_name, 'textVQA', time)
result['textVQA'] = acc
if args.eval_docVQA:
dataset = docVQADataset(args.docVQA_image_dir_path, args.docVQA_ann_path)
acc = evaluate_VQA(model, dataset, args.model_name, 'docVQA', time)
result['docVQA'] = acc
if args.eval_ocrVQA:
dataset = ocrVQADataset(args.ocrVQA_image_dir_path, args.ocrVQA_ann_path)
random_indices = np.random.choice(
len(dataset), max_sample_num, replace=False
)
dataset = torch.utils.data.Subset(dataset,random_indices)
acc = evaluate_VQA(model, dataset, args.model_name, 'ocrVQA', time)
result['ocrVQA'] = acc
if args.eval_STVQA:
dataset = STVQADataset(args.STVQA_image_dir_path, args.STVQA_ann_path)
random_indices = np.random.choice(
len(dataset), max_sample_num, replace=False
)
dataset = torch.utils.data.Subset(dataset,random_indices)
acc = evaluate_VQA(model, dataset, args.model_name, 'STVQA', time)
result['STVQA'] = acc
if args.eval_ocr:
for i in range(len(ocr_dataset_name)):
dataset = ocrDataset(args.ocr_dir_path, ocr_dataset_name[i])
acc = evaluate_OCR(model, dataset, args.model_name, ocr_dataset_name[i], time)
result[ocr_dataset_name[i]] = acc
result_path = os.path.join(os.path.join(args.answer_path, time), 'result.json')
with open(result_path, "w") as f:
f.write(json.dumps(result, indent=4))
if __name__ == "__main__":
args = parse_args()
main(args)

21
models/BLIP2/BLIP2.py Normal file
View File

@@ -0,0 +1,21 @@
from transformers import Blip2Processor, Blip2ForConditionalGeneration
import torch
from PIL import Image
from ..process import pad_image
#There are some issues with the Hugging Face version of the BLIP2-opt model.
class BLIP2:
def __init__(self, model_path, device = "cuda") -> None:
self.processor = Blip2Processor.from_pretrained(model_path)
self.model = Blip2ForConditionalGeneration.from_pretrained(
model_path, torch_dtype=torch.float16).to(device)
self.model.eval()
self.device = device
def generate(self, image, question, pad=True):
prompt =f'Question: {question} Answer:'
image = Image.open(image)
if pad:
image = pad_image(image, (224,224))
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device, torch.float16)
generated_ids = self.model.generate(**inputs)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return generated_text

Binary file not shown.

47
models/LLaVA/LLaVA.py Normal file
View File

@@ -0,0 +1,47 @@
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
import torch
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def patch_config(config):
patch_dict = {
"use_mm_proj": True,
"mm_vision_tower": "openai/clip-vit-large-patch14",
"mm_hidden_size": 1024
}
cfg = AutoConfig.from_pretrained(config)
if not hasattr(cfg, "mm_vision_tower"):
print(f'`mm_vision_tower` not found in `{config}`, applying patch and save to disk.')
for k, v in patch_dict.items():
setattr(cfg, k, v)
cfg.save_pretrained(config)
class LLaVA:
def __init__(self, model_path) -> None:
tokenizer = AutoTokenizer.from_pretrained(model_path)
patch_config(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16).cuda()
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
vision_tower = model.model.vision_tower[0]
vision_tower.to(device='cuda', dtype=torch.float16)
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end:
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
def generate(self, image, question):

Binary file not shown.

Binary file not shown.

20
models/lavis/lavis.py Normal file
View File

@@ -0,0 +1,20 @@
import torch
from PIL import Image
from lavis.models import load_model_and_preprocess
from ..process import pad_image
class lavis:
def __init__(self, model_name, model_type, device) -> None:
model, vis_processors, txt_processors = load_model_and_preprocess(name = model_name, model_type = model_type, is_eval=True, device=device)
self.model = model
self.vis_processors = vis_processors
self.txt_processors = txt_processors
self.device = device
def generate(self, image, question, pad=True):
prompt = f'Question: {question} Short answer:'
image = Image.open(image).convert("RGB")
if pad:
image = pad_image(image, (224,224))
image = self.vis_processors["eval"](image).unsqueeze(0).to(self.device)
prompt = self.txt_processors["eval"](prompt)
answer = self.model.predict_answers(samples={"image": image, "text_input": prompt}, inference_method="generate", max_len=32)[0]
return answer

View File

View File

@@ -0,0 +1,454 @@
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CLIP model configuration"""
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
if TYPE_CHECKING:
from transformers.processing_utils import ProcessorMixin
from transformers.utils import TensorType
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/config.json",
# See all CLIP models at https://huggingface.co/models?filter=clip
}
class CLIPTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the text encoder of the CLIP
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`CLIPModel`].
hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 77):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import CLIPTextConfig, CLIPTextModel
>>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPTextConfig()
>>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clip_text_model"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
projection_dim=512,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=1e-6,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from CLIPConfig
if config_dict.get("model_type") == "clip":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class CLIPVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import CLIPVisionConfig, CLIPVisionModel
>>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPVisionConfig()
>>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
projection_dim=512,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from CLIPConfig
if config_dict.get("model_type") == "clip":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class CLIPConfig(PretrainedConfig):
r"""
[`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
a configuration with the defaults will yield a similar configuration to that of the CLIP
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import CLIPConfig, CLIPModel
>>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPConfig()
>>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
>>> from transformers import CLIPTextConfig, CLIPVisionConfig
>>> # Initializing a CLIPText and CLIPVision configuration
>>> config_text = CLIPTextConfig()
>>> config_vision = CLIPVisionConfig()
>>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "clip"
is_composition = True
def __init__(
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
vision_config_dict = kwargs.pop("vision_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = CLIPTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
f'value `text_config["{key}"]` will be overriden.'
)
logger.warning(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if vision_config_dict is not None:
if vision_config is None:
vision_config = {}
# This is the complete result when using `vision_config_dict`.
_vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
_vision_config_dict["id2label"] = {
str(key): value for key, value in _vision_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
message = (
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
f'The value `vision_config["{key}"]` will be overriden.'
)
logger.warning(message)
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.")
self.text_config = CLIPTextConfig(**text_config)
self.vision_config = CLIPVisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs):
r"""
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
configuration.
Returns:
[`CLIPConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["text_config"] = self.text_config.to_dict()
output["vision_config"] = self.vision_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
class CLIPOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
]
)
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
def generate_dummy_inputs(
self,
processor: "ProcessorMixin",
batch_size: int = -1,
seq_length: int = -1,
framework: Optional["TensorType"] = None,
) -> Mapping[str, Any]:
text_input_dict = super().generate_dummy_inputs(
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
)
image_input_dict = super().generate_dummy_inputs(
processor.feature_extractor, batch_size=batch_size, framework=framework
)
return {**text_input_dict, **image_input_dict}
@property
def default_onnx_opset(self) -> int:
return 14

File diff suppressed because it is too large Load Diff

44
models/mPLUG_owl/mPLUG.py Normal file
View File

@@ -0,0 +1,44 @@
import argparse
import json
import torch
from transformers.models.llama.configuration_llama import LlamaConfig
from mplug_owl.configuration_mplug_owl import mPLUG_OwlConfig
from mplug_owl.modeling_mplug_owl import mPLUG_OwlForConditionalGeneration
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from mplug_owl.modeling_mplug_owl import ImageProcessor
from mplug_owl.tokenize_utils import tokenize_prompts
class mPLUG:
def __init__(self, checkpoint_path=None, tokenizer_path=None) -> None:
config = mPLUG_OwlConfig()
self.model = mPLUG_OwlForConditionalGeneration(config=config).to(torch.bfloat16)
self.model.eval()
if checkpoint_path is not None:
tmp_ckpt = torch.load(
checkpoint_path, map_location='cpu')
msg = self.model.load_state_dict(tmp_ckpt, strict=False)
print(msg)
assert tokenizer_path is not None
self.tokenizer = LlamaTokenizer(
tokenizer_path, pad_token='<unk>', add_bos_token=False)
self.img_processor = ImageProcessor()
def generate(self, image, question, max_length=512, top_k=1, do_sample=True, **generate_kwargs):
prompts = [
f'''The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: <image>
Human: {question}
AI: ''']
tokens_to_generate = 0
add_BOS = True
context_tokens_tensor, context_length_tensorm, attention_mask = tokenize_prompts(
prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS, tokenizer=self.tokenizer, ignore_dist=True)
images = self.img_processor(image).to(torch.bfloat16).cuda()
context_tokens_tensor = context_tokens_tensor.cuda()
self.model.eval()
with torch.no_grad():
res = self.model.generate(input_ids=context_tokens_tensor, pixel_values=images,
attention_mask=attention_mask, max_lengt=max_length,top_k=top_k,do_sample=do_sample,**generate_kwargs)
sentence = self.tokenizer.decode(res.tolist()[0], skip_special_tokens=True)
return sentence

View File

View File

@@ -0,0 +1,154 @@
# coding=utf-8
# Copyright 2023 Alibaba Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto import CONFIG_MAPPING
from transformers.models.auto.modeling_auto import \
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.utils import logging
logger = logging.get_logger(__name__)
class mPLUG_OwlVisualAbstractorConfig(PretrainedConfig):
model_type = "mPLUG_OwlVisualAbstractor"
def __init__(
self,
vocab_size=30522,
hidden_size=1024,
num_hidden_layers=6,
num_attention_heads=8,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-5,
pad_token_id=0,
position_embedding_type="absolute",
classifier_dropout=None,
cross_attention_frequency=2,
encoder_hidden_size=1024,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.classifier_dropout = classifier_dropout
self.cross_attention_frequency = cross_attention_frequency
self.encoder_hidden_size = encoder_hidden_size
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs)
if config_dict.get("model_type") == "mplug_owl":
config_dict = config_dict["abstractor_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class mPLUG_OwlConfig(PretrainedConfig):
model_type = "mplug_owl"
is_composition = True
def __init__(self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs):
super().__init__(**kwargs)
from clip.configuration_clip import CLIPVisionConfig
if vision_config is None:
# By defalt we use openai-clip large patch14
vision_config = CLIPVisionConfig(
**vision_config_dict, layer_norm_eps=1e-6).to_dict()
logger.info(
"vision_config is None.")
if visual_abstractor_config is None:
visual_abstractor_config = {}
logger.info(
"abstractor_config is None. ")
if text_config is None:
# we use LLAMA 7b by default
from transformers.models.llama.configuration_llama import \
LlamaConfig
text_config = LlamaConfig(pad_token_id=2).to_dict()
logger.info("text_config is None.")
self.vision_config = CLIPVisionConfig(**vision_config)
self.visual_abstractor_config = mPLUG_OwlVisualAbstractorConfig(
**visual_abstractor_config)
self.visual_abstractor_config.layer_norm_eps = 1e-6
text_model_type = text_config["model_type"] if "model_type" in text_config else "opt"
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
self.tie_word_embeddings = self.text_config.tie_word_embeddings
self.is_encoder_decoder = self.text_config.is_encoder_decoder
self.num_query_tokens = num_query_tokens
self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
self.initializer_factor = 1.0
self.initializer_range = 0.02
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["vision_config"] = self.vision_config.to_dict()
output["abstractor_config"] = self.visual_abstractor_config.to_dict()
output["text_config"] = self.text_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
vision_config_dict = {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 8,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,171 @@
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization utilities."""
import re
import torch
from icecream import ic
def detokenize_generations(tokens_gpu_tensor,
lengths_gpu_tensor,
return_segments, tokenizer):
"""Detokenize the generated tokens."""
prompts_plus_generations = []
if return_segments:
prompts_plus_generations_segments = []
tokens = tokens_gpu_tensor.cpu().numpy().tolist()
lengths = lengths_gpu_tensor.cpu().numpy().tolist()
for sequence_tokens, length in zip(tokens, lengths):
sequence_tokens = sequence_tokens[:length]
prompts_plus_generations.append(
tokenizer.detokenize(sequence_tokens))
if return_segments:
from tokenizers.decoders import Metaspace
if hasattr(tokenizer, 'tokenizer'):
if isinstance(tokenizer.tokenizer.decoder, Metaspace):
words = tokenizer.tokenizer.decode(sequence_tokens)
else:
words = []
for token in sequence_tokens:
word = tokenizer.tokenizer.decoder[token]
word = bytearray(
[tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
'utf-8', errors='replace')
words.append(word)
prompts_plus_generations_segments.append(words)
else:
words = tokenizer.detokenize(sequence_tokens)
# else:
# words = []
# for token in sequence_tokens:
# word = tokenizer.tokenizer.decoder[token]
# word = bytearray(
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
# 'utf-8', errors='replace')
# words.append(word)
prompts_plus_generations_segments.append(words)
if return_segments:
return tokens, prompts_plus_generations, \
prompts_plus_generations_segments
return tokens, prompts_plus_generations
def tokenize_prompts(prompts=None, tokens_to_generate=None,
add_BOS=None, rank=0, tokenizer=None, ignore_dist=False):
"""Tokenize prompts and make them avaiable on all ranks."""
# On all ranks set to None so we can pass them to functions
sizes_list = None
prompts_tokens_cuda_long_tensor = None
prompts_length_cuda_long_tensor = None
# On the specified rank, build the above.
attention_mask = None
if ignore_dist or torch.distributed.get_rank() == rank:
assert prompts is not None
assert tokens_to_generate is not None
# Tensor of tokens padded and their unpadded length.
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = \
_tokenize_prompts_and_batch(
prompts, tokens_to_generate, add_BOS, tokenizer)
# We need the sizes of these tensors for the boradcast
sizes_list = [prompts_tokens_cuda_long_tensor.size(0), # Batch size
prompts_tokens_cuda_long_tensor.size(1)] # Sequence lenght
return prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer):
"""Given a set of prompts and number of tokens to generate:
- tokenize prompts
- set the sequence length to be the max of length of prompts
plus the number of tokens we would like to generate
- pad all the sequences to this length so we can convert them
into a 2D tensor.
"""
# Tokenize all the prompts.
# if add_BOS:
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt)
# for prompt in prompts]
# else:
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
prompts_tokens = [_tokenize_prompt(
prompt, tokenizer, add_BOS) for prompt in prompts]
# Now we have a list of list of tokens which each list has a different
# size. We want to extend this list to:
# - incorporate the tokens that need to be generated
# - make all the sequences equal length.
# Get the prompts length.
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
# Get the max prompts length.
max_prompt_len = max(prompts_length)
# Number of tokens in the each sample of the batch.
samples_length = max_prompt_len + tokens_to_generate
# Now update the list of list to be of the same size: samples_length.
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
padding_size = samples_length - prompt_length
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size)
# Now we are in a structured format, we can convert to tensors.
prompts_tokens_tensor = torch.LongTensor(prompts_tokens)
prompts_length_tensor = torch.LongTensor(prompts_length)
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2])
for i, l in enumerate(prompts_length_tensor):
attention_mask[i, :l] = 1
return prompts_tokens_tensor, prompts_length_tensor, attention_mask
def _tokenize_prompt(prompt, tokenizer, add_BOS=False, media_info={'<image>': 65}):
media_tokens = {k: -int(i+1) for i, k in enumerate(media_info.keys())}
media_lengths = media_info.copy()
if add_BOS:
prompt_chunk = [tokenizer.bos_token_id]
else:
prompt_chunk = []
# Pure Text
if all([media_token not in prompt for media_token in media_tokens.keys()]):
enc_chunk = prompt_chunk + \
tokenizer(prompt, add_special_tokens=False)['input_ids']
# Multi-Modal Text
else:
enc_chunk = prompt_chunk
pattern = '|'.join(map(re.escape, list(media_tokens.keys())))
chunk_strs = re.split(f'({pattern})', prompt)
chunk_strs = [x for x in chunk_strs if len(x) > 0]
for idx, chunk_str in enumerate(chunk_strs):
if chunk_str in media_tokens:
enc_chunk += [media_tokens[chunk_str]] * \
media_lengths[chunk_str]
else:
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)[
'input_ids']
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos
# tmp_chunk += [tokenizer.eod_id]
enc_chunk += tmp_chunk
return enc_chunk

29
models/process.py Normal file
View File

@@ -0,0 +1,29 @@
import PIL
def pad_image(image, target_size):
"""
:param image: input image
:param target_size: a tuple (num,num)
:return: new image
"""
iw, ih = image.size # 原始图像的尺寸
w, h = target_size # 目标图像的尺寸
scale = min(w / iw, h / ih) # 转换的最小比例
# 保证长或宽,至少一个符合目标图像的尺寸 0.5保证四舍五入
nw = int(iw * scale+0.5)
nh = int(ih * scale+0.5)
w += 128
h += 128
image = image.resize((nw, nh), PIL.Image.BICUBIC) # 更改图像尺寸,双立法插值效果很好
#image.show()
new_image = PIL.Image.new('RGB', (w, h), (0, 0, 0)) # 生成黑色图像
# // 为整数除法,计算图像的位置
new_image.paste(image, ((w - nw) // 2, (h - nh) // 2)) # 将图像填充为中间图像,两侧为黑色的样式
return new_image