Files
MultimodalOCR/models/mPLUG_owl/mplug_owl/configuration_mplug_owl.py
2023-05-17 03:38:36 +08:00

155 lines
5.9 KiB
Python

# coding=utf-8
# Copyright 2023 Alibaba Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto import CONFIG_MAPPING
from transformers.models.auto.modeling_auto import \
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.utils import logging
logger = logging.get_logger(__name__)
class mPLUG_OwlVisualAbstractorConfig(PretrainedConfig):
model_type = "mPLUG_OwlVisualAbstractor"
def __init__(
self,
vocab_size=30522,
hidden_size=1024,
num_hidden_layers=6,
num_attention_heads=8,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-5,
pad_token_id=0,
position_embedding_type="absolute",
classifier_dropout=None,
cross_attention_frequency=2,
encoder_hidden_size=1024,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.classifier_dropout = classifier_dropout
self.cross_attention_frequency = cross_attention_frequency
self.encoder_hidden_size = encoder_hidden_size
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs)
if config_dict.get("model_type") == "mplug_owl":
config_dict = config_dict["abstractor_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class mPLUG_OwlConfig(PretrainedConfig):
model_type = "mplug_owl"
is_composition = True
def __init__(self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs):
super().__init__(**kwargs)
from clip.configuration_clip import CLIPVisionConfig
if vision_config is None:
# By defalt we use openai-clip large patch14
vision_config = CLIPVisionConfig(
**vision_config_dict, layer_norm_eps=1e-6).to_dict()
logger.info(
"vision_config is None.")
if visual_abstractor_config is None:
visual_abstractor_config = {}
logger.info(
"abstractor_config is None. ")
if text_config is None:
# we use LLAMA 7b by default
from transformers.models.llama.configuration_llama import \
LlamaConfig
text_config = LlamaConfig(pad_token_id=2).to_dict()
logger.info("text_config is None.")
self.vision_config = CLIPVisionConfig(**vision_config)
self.visual_abstractor_config = mPLUG_OwlVisualAbstractorConfig(
**visual_abstractor_config)
self.visual_abstractor_config.layer_norm_eps = 1e-6
text_model_type = text_config["model_type"] if "model_type" in text_config else "opt"
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
self.tie_word_embeddings = self.text_config.tie_word_embeddings
self.is_encoder_decoder = self.text_config.is_encoder_decoder
self.num_query_tokens = num_query_tokens
self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
self.initializer_factor = 1.0
self.initializer_range = 0.02
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["vision_config"] = self.vision_config.to_dict()
output["abstractor_config"] = self.visual_abstractor_config.to_dict()
output["text_config"] = self.text_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
vision_config_dict = {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 8,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768}