Files
MultimodalOCR/models/mPLUG_owl/mplug_owl/tokenize_utils.py
2023-05-17 03:38:36 +08:00

172 lines
7.0 KiB
Python

# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization utilities."""
import re
import torch
from icecream import ic
def detokenize_generations(tokens_gpu_tensor,
lengths_gpu_tensor,
return_segments, tokenizer):
"""Detokenize the generated tokens."""
prompts_plus_generations = []
if return_segments:
prompts_plus_generations_segments = []
tokens = tokens_gpu_tensor.cpu().numpy().tolist()
lengths = lengths_gpu_tensor.cpu().numpy().tolist()
for sequence_tokens, length in zip(tokens, lengths):
sequence_tokens = sequence_tokens[:length]
prompts_plus_generations.append(
tokenizer.detokenize(sequence_tokens))
if return_segments:
from tokenizers.decoders import Metaspace
if hasattr(tokenizer, 'tokenizer'):
if isinstance(tokenizer.tokenizer.decoder, Metaspace):
words = tokenizer.tokenizer.decode(sequence_tokens)
else:
words = []
for token in sequence_tokens:
word = tokenizer.tokenizer.decoder[token]
word = bytearray(
[tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
'utf-8', errors='replace')
words.append(word)
prompts_plus_generations_segments.append(words)
else:
words = tokenizer.detokenize(sequence_tokens)
# else:
# words = []
# for token in sequence_tokens:
# word = tokenizer.tokenizer.decoder[token]
# word = bytearray(
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
# 'utf-8', errors='replace')
# words.append(word)
prompts_plus_generations_segments.append(words)
if return_segments:
return tokens, prompts_plus_generations, \
prompts_plus_generations_segments
return tokens, prompts_plus_generations
def tokenize_prompts(prompts=None, tokens_to_generate=None,
add_BOS=None, rank=0, tokenizer=None, ignore_dist=False):
"""Tokenize prompts and make them avaiable on all ranks."""
# On all ranks set to None so we can pass them to functions
sizes_list = None
prompts_tokens_cuda_long_tensor = None
prompts_length_cuda_long_tensor = None
# On the specified rank, build the above.
attention_mask = None
if ignore_dist or torch.distributed.get_rank() == rank:
assert prompts is not None
assert tokens_to_generate is not None
# Tensor of tokens padded and their unpadded length.
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = \
_tokenize_prompts_and_batch(
prompts, tokens_to_generate, add_BOS, tokenizer)
# We need the sizes of these tensors for the boradcast
sizes_list = [prompts_tokens_cuda_long_tensor.size(0), # Batch size
prompts_tokens_cuda_long_tensor.size(1)] # Sequence lenght
return prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer):
"""Given a set of prompts and number of tokens to generate:
- tokenize prompts
- set the sequence length to be the max of length of prompts
plus the number of tokens we would like to generate
- pad all the sequences to this length so we can convert them
into a 2D tensor.
"""
# Tokenize all the prompts.
# if add_BOS:
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt)
# for prompt in prompts]
# else:
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
prompts_tokens = [_tokenize_prompt(
prompt, tokenizer, add_BOS) for prompt in prompts]
# Now we have a list of list of tokens which each list has a different
# size. We want to extend this list to:
# - incorporate the tokens that need to be generated
# - make all the sequences equal length.
# Get the prompts length.
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
# Get the max prompts length.
max_prompt_len = max(prompts_length)
# Number of tokens in the each sample of the batch.
samples_length = max_prompt_len + tokens_to_generate
# Now update the list of list to be of the same size: samples_length.
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
padding_size = samples_length - prompt_length
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size)
# Now we are in a structured format, we can convert to tensors.
prompts_tokens_tensor = torch.LongTensor(prompts_tokens)
prompts_length_tensor = torch.LongTensor(prompts_length)
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2])
for i, l in enumerate(prompts_length_tensor):
attention_mask[i, :l] = 1
return prompts_tokens_tensor, prompts_length_tensor, attention_mask
def _tokenize_prompt(prompt, tokenizer, add_BOS=False, media_info={'<image>': 65}):
media_tokens = {k: -int(i+1) for i, k in enumerate(media_info.keys())}
media_lengths = media_info.copy()
if add_BOS:
prompt_chunk = [tokenizer.bos_token_id]
else:
prompt_chunk = []
# Pure Text
if all([media_token not in prompt for media_token in media_tokens.keys()]):
enc_chunk = prompt_chunk + \
tokenizer(prompt, add_special_tokens=False)['input_ids']
# Multi-Modal Text
else:
enc_chunk = prompt_chunk
pattern = '|'.join(map(re.escape, list(media_tokens.keys())))
chunk_strs = re.split(f'({pattern})', prompt)
chunk_strs = [x for x in chunk_strs if len(x) > 0]
for idx, chunk_str in enumerate(chunk_strs):
if chunk_str in media_tokens:
enc_chunk += [media_tokens[chunk_str]] * \
media_lengths[chunk_str]
else:
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)[
'input_ids']
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos
# tmp_chunk += [tokenizer.eod_id]
enc_chunk += tmp_chunk
return enc_chunk