add dump results to hf model demo

This commit is contained in:
rentainhe
2024-08-31 20:40:59 +08:00
parent 4f3adf3222
commit a99354bb25
2 changed files with 72 additions and 15 deletions

View File

@@ -22,11 +22,12 @@ from sam2.sam2_image_predictor import SAM2ImagePredictor
Hyper parameters
"""
API_TOKEN = "Your API token"
TEXT_PROMPT = "car"
TEXT_PROMPT = "car . building ."
IMG_PATH = "notebooks/images/cars.jpg"
SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
SAM2_MODEL_CONFIG = "sam2_hiera_l.yaml"
GROUNDING_MODEL = DetectionModel.GDino1_5_Pro # DetectionModel.GDino1_6_Pro
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
OUTPUT_DIR = Path("outputs/grounded_sam2_gd1.5_demo")
DUMP_JSON_RESULTS = True
@@ -79,7 +80,7 @@ Init SAM 2 Model and Predict Mask with Box Prompt
# environment settings
# use bfloat16
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
torch.autocast(device_type=DEVICE, dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
@@ -89,7 +90,7 @@ if torch.cuda.get_device_properties(0).major >= 8:
# build SAM2 image predictor
sam2_checkpoint = SAM2_CHECKPOINT
model_cfg = SAM2_MODEL_CONFIG
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=DEVICE)
sam2_predictor = SAM2ImagePredictor(sam2_model)
image = Image.open(img_path)
@@ -160,6 +161,8 @@ if DUMP_JSON_RESULTS:
input_boxes = input_boxes.tolist()
scores = scores.tolist()
# FIXME: class_names should be a list of strings without spaces
class_names = [class_name.strip() for class_name in class_names]
# save the results in standard format
results = {
"image_path": img_path,

View File

@@ -1,7 +1,11 @@
import os
import cv2
import json
import torch
import numpy as np
import supervision as sv
import pycocotools.mask as mask_util
from pathlib import Path
from supervision.draw.color import ColorPalette
from utils.supervision_utils import CUSTOM_COLOR_MAP
from PIL import Image
@@ -9,9 +13,24 @@ from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
from transformers import AutoProcessor, AutoModelForZeroShotObjectDetection
"""
Hyper parameters
"""
GROUNDING_MODEL = "IDEA-Research/grounding-dino-tiny"
TEXT_PROMPT = "car. tire."
IMG_PATH = "notebooks/images/truck.jpg"
SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
SAM2_MODEL_CONFIG = "sam2_hiera_l.yaml"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
OUTPUT_DIR = Path("outputs/grounded_sam2_hf_model_demo")
DUMP_JSON_RESULTS = True
# create output directory
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
# environment settings
# use bfloat16
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
torch.autocast(device_type=DEVICE, dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
@@ -19,28 +38,27 @@ if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cudnn.allow_tf32 = True
# build SAM2 image predictor
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
sam2_checkpoint = SAM2_CHECKPOINT
model_cfg = SAM2_MODEL_CONFIG
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=DEVICE)
sam2_predictor = SAM2ImagePredictor(sam2_model)
# build grounding dino from huggingface
model_id = "IDEA-Research/grounding-dino-tiny"
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id = GROUNDING_MODEL
processor = AutoProcessor.from_pretrained(model_id)
grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(device)
grounding_model = AutoModelForZeroShotObjectDetection.from_pretrained(model_id).to(DEVICE)
# setup the input image and text prompt for SAM 2 and Grounding DINO
# VERY important: text queries need to be lowercased + end with a dot
text = "car. tire."
img_path = 'notebooks/images/truck.jpg'
text = TEXT_PROMPT
img_path = IMG_PATH
image = Image.open(img_path)
sam2_predictor.set_image(np.array(image.convert("RGB")))
inputs = processor(images=image, text=text, return_tensors="pt").to(device)
inputs = processor(images=image, text=text, return_tensors="pt").to(DEVICE)
with torch.no_grad():
outputs = grounding_model(**inputs)
@@ -114,8 +132,44 @@ annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections
label_annotator = sv.LabelAnnotator(color=ColorPalette.from_hex(CUSTOM_COLOR_MAP))
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
cv2.imwrite("groundingdino_annotated_image.jpg", annotated_frame)
cv2.imwrite(os.path.join(OUTPUT_DIR, "groundingdino_annotated_image.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator(color=ColorPalette.from_hex(CUSTOM_COLOR_MAP))
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite("grounded_sam2_annotated_image_with_mask.jpg", annotated_frame)
cv2.imwrite(os.path.join(OUTPUT_DIR, "grounded_sam2_annotated_image_with_mask.jpg"), annotated_frame)
"""
Dump the results in standard format and save as json files
"""
def single_mask_to_rle(mask):
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
return rle
if DUMP_JSON_RESULTS:
# convert mask into rle format
mask_rles = [single_mask_to_rle(mask) for mask in masks]
input_boxes = input_boxes.tolist()
scores = scores.tolist()
# save the results in standard format
results = {
"image_path": img_path,
"annotations" : [
{
"class_name": class_name,
"bbox": box,
"segmentation": mask_rle,
"score": score,
}
for class_name, box, mask_rle, score in zip(class_names, input_boxes, mask_rles, scores)
],
"box_format": "xyxy",
"img_width": image.width,
"img_height": image.height,
}
with open(os.path.join(OUTPUT_DIR, "grounded_sam2_hf_model_demo_results.json"), "w") as f:
json.dump(results, f, indent=4)