support dump results in 1.5 image demo

This commit is contained in:
rentainhe
2024-08-31 20:22:17 +08:00
parent 5d27e4f4f4
commit 4f3adf3222

View File

@@ -6,19 +6,38 @@ from dds_cloudapi_sdk import TextPrompt
from dds_cloudapi_sdk import DetectionModel
from dds_cloudapi_sdk import DetectionTarget
import os
import cv2
import json
import torch
import numpy as np
import supervision as sv
import pycocotools.mask as mask_util
from pathlib import Path
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
"""
Hyper parameters
"""
API_TOKEN = "Your API token"
TEXT_PROMPT = "car"
IMG_PATH = "notebooks/images/cars.jpg"
SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
SAM2_MODEL_CONFIG = "sam2_hiera_l.yaml"
GROUNDING_MODEL = DetectionModel.GDino1_5_Pro # DetectionModel.GDino1_6_Pro
OUTPUT_DIR = Path("outputs/grounded_sam2_gd1.5_demo")
DUMP_JSON_RESULTS = True
# create output directory
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
"""
Prompt Grounding DINO 1.5 with Text for Box Prompt Generation with Cloud API
"""
# Step 1: initialize the config
token = "Your API token"
token = API_TOKEN
config = Config(token)
# Step 2: initialize the client
@@ -27,14 +46,14 @@ client = Client(config)
# Step 3: run the task by DetectionTask class
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
# if you are processing local image file, upload them to DDS server to get the image url
img_path = "notebooks/images/cars.jpg"
img_path = IMG_PATH
image_url = client.upload_file(img_path)
task = DetectionTask(
image_url=image_url,
prompts=[TextPrompt(text="car")],
prompts=[TextPrompt(text=TEXT_PROMPT)],
targets=[DetectionTarget.BBox], # detect bbox
model=DetectionModel.GDino1_5_Pro, # detect with GroundingDino-1.5-Pro model
model=GROUNDING_MODEL, # detect with GroundingDino-1.5-Pro model
)
client.run_task(task)
@@ -68,8 +87,8 @@ if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cudnn.allow_tf32 = True
# build SAM2 image predictor
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
model_cfg = "sam2_hiera_l.yaml"
sam2_checkpoint = SAM2_CHECKPOINT
model_cfg = SAM2_MODEL_CONFIG
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
sam2_predictor = SAM2ImagePredictor(sam2_model)
@@ -120,8 +139,43 @@ annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
cv2.imwrite("groundingdino_annotated_image.jpg", annotated_frame)
cv2.imwrite(os.path.join(OUTPUT_DIR, "groundingdino_annotated_image.jpg"), annotated_frame)
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
cv2.imwrite("grounded_sam2_annotated_image_with_mask.jpg", annotated_frame)
cv2.imwrite(os.path.join(OUTPUT_DIR, "grounded_sam2_annotated_image_with_mask.jpg"), annotated_frame)
"""
Dump the results in standard format and save as json files
"""
def single_mask_to_rle(mask):
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
return rle
if DUMP_JSON_RESULTS:
# convert mask into rle format
mask_rles = [single_mask_to_rle(mask) for mask in masks]
input_boxes = input_boxes.tolist()
scores = scores.tolist()
# save the results in standard format
results = {
"image_path": img_path,
"annotations" : [
{
"class_name": class_name,
"bbox": box,
"segmentation": mask_rle,
"score": score,
}
for class_name, box, mask_rle, score in zip(class_names, input_boxes, mask_rles, scores)
],
"box_format": "xyxy",
"img_width": image.width,
"img_height": image.height,
}
with open(os.path.join(OUTPUT_DIR, "grounded_sam2_gd1.5_image_demo_results.json"), "w") as f:
json.dump(results, f, indent=4)