add OCRBench v2
This commit is contained in:
330
OCRBench/scripts/llavar.py
Normal file
330
OCRBench/scripts/llavar.py
Normal file
@@ -0,0 +1,330 @@
|
||||
import json
|
||||
from argparse import ArgumentParser
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
from PIL import Image
|
||||
import math
|
||||
import multiprocessing
|
||||
from multiprocessing import Pool, Queue, Manager
|
||||
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||||
from llava import LlavaLlamaForCausalLM
|
||||
from llava.conversation import conv_templates
|
||||
from llava import conversation as conversation_lib
|
||||
from llava.utils import disable_torch_init
|
||||
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
|
||||
from PIL import Image,ImageOps
|
||||
# https://github.com/SALT-NLP/LLaVAR/blob/main/LLaVA/llava/eval/model_vqa.py
|
||||
|
||||
def resize_image(image, target_size):
|
||||
width, height = image.size
|
||||
aspect_ratio = width / height
|
||||
if aspect_ratio > 1:
|
||||
new_width = target_size[0]
|
||||
new_height = int(new_width / aspect_ratio)
|
||||
else:
|
||||
new_height = target_size[1]
|
||||
new_width = int(new_height * aspect_ratio)
|
||||
image = image.resize((new_width, new_height))
|
||||
width_diff = target_size[0] - image.size[0]
|
||||
height_diff = target_size[1] - image.size[1]
|
||||
left_padding = 0
|
||||
top_padding = 0
|
||||
right_padding = width_diff - left_padding
|
||||
bottom_padding = height_diff - top_padding
|
||||
padded_image = ImageOps.expand(image, border=(left_padding, top_padding, right_padding, bottom_padding), fill=0)
|
||||
return padded_image
|
||||
|
||||
DEFAULT_IMAGE_TOKEN = "<image>"
|
||||
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
||||
DEFAULT_IM_START_TOKEN = "<im_start>"
|
||||
DEFAULT_IM_END_TOKEN = "<im_end>"
|
||||
|
||||
def patch_config(config):
|
||||
patch_dict = {
|
||||
"use_mm_proj": True,
|
||||
"mm_vision_tower": "openai/clip-vit-large-patch14",
|
||||
"mm_hidden_size": 1024
|
||||
}
|
||||
|
||||
cfg = AutoConfig.from_pretrained(config)
|
||||
if not hasattr(cfg, "mm_vision_tower"):
|
||||
print(f'`mm_vision_tower` not found in `{config}`, applying patch and save to disk.')
|
||||
for k, v in patch_dict.items():
|
||||
setattr(cfg, k, v)
|
||||
cfg.save_pretrained(config)
|
||||
|
||||
def split_list(lst, n):
|
||||
length = len(lst)
|
||||
avg = length // n # 每份的大小
|
||||
result = [] # 存储分割后的子列表
|
||||
for i in range(n - 1):
|
||||
result.append(lst[i*avg:(i+1)*avg])
|
||||
result.append(lst[(n-1)*avg:])
|
||||
return result
|
||||
|
||||
def save_json(json_list,save_path):
|
||||
with open(save_path, 'w') as file:
|
||||
json.dump(json_list, file,indent=4)
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default="./model_weights/LLaVar")
|
||||
parser.add_argument("--save_name", type=str, default="llavar")
|
||||
parser.add_argument("--conv-mode", type=str, default="llava_v1")
|
||||
parser.add_argument("--mm-projector", type=str, default=None)
|
||||
parser.add_argument("--vision-tower", type=str, default=None)
|
||||
parser.add_argument("--num_workers", type=int, default=8)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0,
|
||||
"Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,"Doc-oriented VQA":0,
|
||||
"Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0}
|
||||
AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
|
||||
def eval_worker(args, data, eval_id, output_queue):
|
||||
print(f"Process {eval_id} start.")
|
||||
device = f"cuda:{eval_id}"
|
||||
disable_torch_init()
|
||||
model_name = os.path.expanduser(args.model_path)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
if args.mm_projector is None:
|
||||
patch_config(model_name)
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
|
||||
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
|
||||
|
||||
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
if mm_use_im_start_end:
|
||||
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
|
||||
vision_tower = model.model.vision_tower[0]
|
||||
vision_tower.to(device=device, dtype=torch.float16)
|
||||
vision_config = vision_tower.config
|
||||
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||||
vision_config.use_im_start_end = mm_use_im_start_end
|
||||
if mm_use_im_start_end:
|
||||
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||||
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
else:
|
||||
# in case of using a pretrained model with only a MLP projector weights
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device)
|
||||
|
||||
vision_tower = CLIPVisionModel.from_pretrained(args.vision_tower, torch_dtype=torch.float16).to(device)
|
||||
image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower, torch_dtype=torch.float16)
|
||||
|
||||
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
if mm_use_im_start_end:
|
||||
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
|
||||
vision_config = vision_tower.config
|
||||
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||||
vision_config.use_im_start_end = mm_use_im_start_end
|
||||
if mm_use_im_start_end:
|
||||
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||||
|
||||
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
|
||||
mm_projector = torch.nn.Linear(vision_config.hidden_size, model.config.hidden_size)
|
||||
mm_projector_weights = torch.load(args.mm_projector, map_location='cpu')
|
||||
mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
|
||||
|
||||
model.model.mm_projector = mm_projector.to(device).half()
|
||||
model.model.vision_tower = [vision_tower]
|
||||
for i in tqdm(range(len(data))):
|
||||
img_path = os.path.join(args.image_folder, data[i]['image_path'])
|
||||
qs = data[i]['question']
|
||||
# qs = qs+"\nAnswer the question using a single word or phrase."
|
||||
if data[i].get("predict", 0)!=0:
|
||||
print(f"{img_path} predict exist, continue.")
|
||||
continue
|
||||
if mm_use_im_start_end:
|
||||
qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
|
||||
else:
|
||||
qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
|
||||
if args.conv_mode == 'simple_legacy':
|
||||
qs += '\n\n### Response:'
|
||||
# conv = default_conversation.copy()
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
# modified
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
inputs = tokenizer([prompt])
|
||||
image = Image.open(img_path)
|
||||
# if "REval" in args.image_folder:
|
||||
image = resize_image(image, (336, 336))
|
||||
|
||||
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||||
|
||||
input_ids = torch.as_tensor(inputs.input_ids).to(device)
|
||||
|
||||
# new stopping implementation
|
||||
class KeywordsStoppingCriteria(StoppingCriteria):
|
||||
def __init__(self, keywords, tokenizer, input_ids):
|
||||
self.keywords = keywords
|
||||
self.tokenizer = tokenizer
|
||||
self.start_len = None
|
||||
self.input_ids = input_ids
|
||||
|
||||
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||||
if self.start_len is None:
|
||||
self.start_len = self.input_ids.shape[1]
|
||||
else:
|
||||
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
||||
for keyword in self.keywords:
|
||||
if keyword in outputs:
|
||||
return True
|
||||
return False
|
||||
|
||||
# keywords = ['###']
|
||||
# modified
|
||||
keywords = ['</s>']
|
||||
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=image_tensor.unsqueeze(0).half().to(device),
|
||||
do_sample=False,
|
||||
temperature=0,
|
||||
max_new_tokens=200,
|
||||
stopping_criteria=[stopping_criteria])
|
||||
input_token_len = input_ids.shape[1]
|
||||
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
||||
if n_diff_input_output > 0:
|
||||
print(f'[Warning] Sample {i}: {n_diff_input_output} output_ids are not the same as the input_ids')
|
||||
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
||||
|
||||
# modified
|
||||
if args.conv_mode == 'simple_legacy' or args.conv_mode == 'simple':
|
||||
while True:
|
||||
cur_len = len(outputs)
|
||||
outputs = outputs.strip()
|
||||
for pattern in ['###', 'Assistant:', 'Response:']:
|
||||
if outputs.startswith(pattern):
|
||||
outputs = outputs[len(pattern):].strip()
|
||||
if len(outputs) == cur_len:
|
||||
break
|
||||
|
||||
if conv.sep_style == conversation_lib.SeparatorStyle.TWO:
|
||||
sep = conv.sep2
|
||||
else:
|
||||
sep = conv.sep
|
||||
|
||||
try:
|
||||
index = outputs.index(sep)
|
||||
except ValueError:
|
||||
outputs += sep
|
||||
index = outputs.index(sep)
|
||||
outputs = outputs[:index].strip()
|
||||
data[i]['predict'] = outputs
|
||||
output_queue.put({eval_id: data})
|
||||
print(f"Process {eval_id} has completed.")
|
||||
|
||||
if __name__=="__main__":
|
||||
multiprocessing.set_start_method('spawn')
|
||||
args = _get_args()
|
||||
|
||||
if os.path.exists(os.path.join(args.output_folder,f"{args.save_name}.json")):
|
||||
data_path = os.path.join(args.output_folder,f"{args.save_name}.json")
|
||||
print(f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}.")
|
||||
else:
|
||||
data_path = args.OCRBench_file
|
||||
|
||||
with open(data_path, "r") as f:
|
||||
data = json.load(f)
|
||||
|
||||
data_list = split_list(data, args.num_workers)
|
||||
output_queue = Manager().Queue()
|
||||
|
||||
pool = Pool(processes=args.num_workers)
|
||||
for i in range(len(data_list)):
|
||||
pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue))
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
results = {}
|
||||
while not output_queue.empty():
|
||||
result = output_queue.get()
|
||||
results.update(result)
|
||||
data = []
|
||||
for i in range(len(data_list)):
|
||||
data.extend(results[i])
|
||||
|
||||
for i in range(len(data)):
|
||||
data_type = data[i]["type"]
|
||||
dataset_name = data[i]["dataset_name"]
|
||||
answers = data[i]["answers"]
|
||||
if data[i].get('predict',0)==0:
|
||||
continue
|
||||
predict = data[i]['predict']
|
||||
data[i]['result'] = 0
|
||||
if dataset_name == "HME100k":
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
save_json(data, os.path.join(args.output_folder,f"{args.save_name}.json"))
|
||||
if len(data)==1000:
|
||||
for i in range(len(data)):
|
||||
if data[i].get("result",100)==100:
|
||||
continue
|
||||
OCRBench_score[data[i]['type']] += data[i]['result']
|
||||
recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition']
|
||||
Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition']
|
||||
print("###########################OCRBench##############################")
|
||||
print(f"Text Recognition(Total 300):{recognition_score}")
|
||||
print("------------------Details of Recognition Score-------------------")
|
||||
print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}")
|
||||
print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}")
|
||||
print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}")
|
||||
print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}")
|
||||
print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}")
|
||||
print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}")
|
||||
print("----------------------Final Score-------------------------------")
|
||||
print(f"Final Score(Total 1000): {Final_score}")
|
||||
else:
|
||||
for i in range(len(data)):
|
||||
num_all[data[i]['dataset_name']] += 1
|
||||
if data[i].get("result",100)==100:
|
||||
continue
|
||||
AllDataset_score[data[i]['dataset_name']] += data[i]['result']
|
||||
for key in AllDataset_score.keys():
|
||||
print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")
|
Reference in New Issue
Block a user