Create qwenvl_api.py
This commit is contained in:
138
scripts/qwenvl_api.py
Normal file
138
scripts/qwenvl_api.py
Normal file
@@ -0,0 +1,138 @@
|
||||
import pathlib
|
||||
from argparse import ArgumentParser
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
import os
|
||||
import sys
|
||||
from http import HTTPStatus
|
||||
from dashscope import MultiModalConversation
|
||||
import time
|
||||
# You should follow the instructions here befor strat: https://help.aliyun.com/zh/dashscope/developer-reference/vl-plus-quick-start
|
||||
OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0,
|
||||
"Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,
|
||||
"Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0}
|
||||
AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
def save_json(json_list,save_path):
|
||||
with open(save_path, 'w') as file:
|
||||
json.dump(json_list, file,indent=4)
|
||||
|
||||
def call_with_local_file(img_path, question, model_name):
|
||||
"""Sample of use local file.
|
||||
linux&mac file schema: file:///home/images/test.png
|
||||
windows file schema: file://D:/images/abc.png
|
||||
"""
|
||||
local_file_path1 = f'file://{img_path}'
|
||||
messages = [{
|
||||
'role': 'system',
|
||||
'content': [{
|
||||
'text': 'You are a helpful assistant.'
|
||||
}]
|
||||
}, {
|
||||
'role':
|
||||
'user',
|
||||
'content': [
|
||||
{
|
||||
'image': local_file_path1
|
||||
},
|
||||
{
|
||||
'text': question
|
||||
},
|
||||
]
|
||||
}]
|
||||
response = MultiModalConversation.call(model=model_name, messages=messages)
|
||||
# time.sleep(2) #For qwenvl-max you may need to add this line to avoid the limits.
|
||||
print(response)
|
||||
return response['output']['choices'][0]["message"]['content'][0]['text']
|
||||
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--output_path", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model", type=str, default="qwen-vl-max")
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = _get_args()
|
||||
if os.path.exists(os.path.join(args.output_path,f"{args.model}.json")):
|
||||
data_path = os.path.join(args.output_path,f"{args.model}.json")
|
||||
else:
|
||||
data_path = args.OCRBench_file
|
||||
with open(data_path, "r") as f:
|
||||
data = json.load(f)
|
||||
for i in tqdm(range(len(data))):
|
||||
img_path = os.path.join(args.image_folder, data[i]['image_path'])
|
||||
question = data[i]['question']
|
||||
if data[i].get("predict", 0)!=0:
|
||||
print(f"{img_path} predict exist, continue.")
|
||||
continue
|
||||
try:
|
||||
response = call_with_local_file(img_path, question, args.model)
|
||||
data[i]['predict'] = response
|
||||
except:
|
||||
print("QwenVL api failed")
|
||||
save_json(data, os.path.join(args.output_path,f"{args.model}.json"))
|
||||
for i in range(len(data)):
|
||||
data_type = data[i]["type"]
|
||||
dataset_name = data[i]["dataset_name"]
|
||||
answers = data[i]["answers"]
|
||||
if data[i].get('predict',0)==0:
|
||||
continue
|
||||
predict = data[i]['predict']
|
||||
data[i]['result'] = 0
|
||||
if dataset_name == "HME100k":
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
save_json(data, os.path.join(args.output_path,f"{args.model}.json"))
|
||||
for i in range(len(data)):
|
||||
if data[i].get("result",100)==100:
|
||||
continue
|
||||
OCRBench_score[data[i]['type']] += data[i]['result']
|
||||
recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition']
|
||||
Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition']
|
||||
print("###########################OCRBench##############################")
|
||||
print(f"Text Recognition(Total 300):{recognition_score}")
|
||||
print("------------------Details of Recognition Score-------------------")
|
||||
print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}")
|
||||
print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}")
|
||||
print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}")
|
||||
print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}")
|
||||
print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}")
|
||||
print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}")
|
||||
print("----------------------Final Score-------------------------------")
|
||||
print(f"Final Score(Total 1000): {Final_score}")
|
Reference in New Issue
Block a user