interlm
This commit is contained in:
@@ -23,7 +23,7 @@ def save_json(json_list,save_path):
|
||||
json.dump(json_list, file,indent=4)
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_path", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--OPENAI_API_KEY", type=str, default="")
|
||||
|
@@ -21,7 +21,7 @@ def save_json(json_list,save_path):
|
||||
json.dump(json_list, file,indent=4)
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_path", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--GOOGLE_API_KEY", type=str, default="")
|
||||
|
@@ -32,7 +32,7 @@ def save_json(json_list,save_path):
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default="liuhaotian/llava-v1.5-7b")
|
||||
|
@@ -28,7 +28,7 @@ def save_json(json_list,save_path):
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default="./model_weights/blip2-opt-6.7b")
|
||||
|
@@ -27,7 +27,7 @@ def save_json(json_list,save_path):
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default="./model_weights/instructblip-vicuna-7b")
|
||||
|
@@ -36,7 +36,7 @@ def save_json(json_list,save_path):
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default="bliva_vicuna")
|
||||
|
161
scripts/interlm.py
Normal file
161
scripts/interlm.py
Normal file
@@ -0,0 +1,161 @@
|
||||
import json
|
||||
from argparse import ArgumentParser
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
from PIL import Image
|
||||
import math
|
||||
import multiprocessing
|
||||
from multiprocessing import Pool, Queue, Manager
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
# https://github.com/InternLM/InternLM-XComposer/tree/main/InternLM-XComposer-1.0
|
||||
def split_list(lst, n):
|
||||
length = len(lst)
|
||||
avg = length // n # 每份的大小
|
||||
result = [] # 存储分割后的子列表
|
||||
for i in range(n - 1):
|
||||
result.append(lst[i*avg:(i+1)*avg])
|
||||
result.append(lst[(n-1)*avg:])
|
||||
return result
|
||||
|
||||
def save_json(json_list,save_path):
|
||||
with open(save_path, 'w') as file:
|
||||
json.dump(json_list, file,indent=4)
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default='internlm/internlm-xcomposer-7b')#TODO Set the address of your model's weights
|
||||
parser.add_argument("--save_name", type=str, default="internlm-xcomposer-7b") #TODO Set the name of the JSON file you save in the output_folder.
|
||||
parser.add_argument("--num_workers", type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0,
|
||||
"Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,"Doc-oriented VQA":0,
|
||||
"Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0}
|
||||
AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
|
||||
def eval_worker(args, data, eval_id, output_queue):
|
||||
print(f"Process {eval_id} start.")
|
||||
checkpoint = args.model_path
|
||||
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
# init model and tokenizer
|
||||
model = AutoModel.from_pretrained(checkpoint, trust_remote_code=True).cuda().eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
|
||||
model.tokenizer = tokenizer
|
||||
|
||||
for i in tqdm(range(len(data))):
|
||||
img_path = os.path.join(args.image_folder, data[i]['image_path'])
|
||||
qs = data[i]['question']
|
||||
response = model.generate(qs, img_path)
|
||||
data[i]['predict'] = response
|
||||
output_queue.put({eval_id: data})
|
||||
print(f"Process {eval_id} has completed.")
|
||||
|
||||
if __name__=="__main__":
|
||||
multiprocessing.set_start_method('spawn')
|
||||
args = _get_args()
|
||||
|
||||
if os.path.exists(os.path.join(args.output_folder,f"{args.save_name}.json")):
|
||||
data_path = os.path.join(args.output_folder,f"{args.save_name}.json")
|
||||
print(f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}.")
|
||||
else:
|
||||
data_path = args.OCRBench_file
|
||||
|
||||
with open(data_path, "r") as f:
|
||||
data = json.load(f)
|
||||
|
||||
data_list = split_list(data, args.num_workers)
|
||||
|
||||
output_queue = Manager().Queue()
|
||||
|
||||
pool = Pool(processes=args.num_workers)
|
||||
for i in range(len(data_list)):
|
||||
pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue))
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
results = {}
|
||||
while not output_queue.empty():
|
||||
result = output_queue.get()
|
||||
results.update(result)
|
||||
data = []
|
||||
for i in range(len(data_list)):
|
||||
data.extend(results[i])
|
||||
|
||||
for i in range(len(data)):
|
||||
data_type = data[i]["type"]
|
||||
dataset_name = data[i]["dataset_name"]
|
||||
answers = data[i]["answers"]
|
||||
if data[i].get('predict',0)==0:
|
||||
continue
|
||||
predict = data[i]['predict']
|
||||
data[i]['result'] = 0
|
||||
if dataset_name == "HME100k":
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
save_json(data, os.path.join(args.output_folder,f"{args.save_name}.json"))
|
||||
if len(data)==1000:
|
||||
for i in range(len(data)):
|
||||
if data[i].get("result",100)==100:
|
||||
continue
|
||||
OCRBench_score[data[i]['type']] += data[i]['result']
|
||||
recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition']
|
||||
Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition']
|
||||
print("###########################OCRBench##############################")
|
||||
print(f"Text Recognition(Total 300):{recognition_score}")
|
||||
print("------------------Details of Recognition Score-------------------")
|
||||
print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}")
|
||||
print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}")
|
||||
print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}")
|
||||
print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}")
|
||||
print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}")
|
||||
print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}")
|
||||
print("----------------------Final Score-------------------------------")
|
||||
print(f"Final Score(Total 1000): {Final_score}")
|
||||
else:
|
||||
for i in range(len(data)):
|
||||
num_all[data[i]['dataset_name']] += 1
|
||||
if data[i].get("result",100)==100:
|
||||
continue
|
||||
AllDataset_score[data[i]['dataset_name']] += data[i]['result']
|
||||
for key in AllDataset_score.keys():
|
||||
print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")
|
162
scripts/interlm2.py
Normal file
162
scripts/interlm2.py
Normal file
@@ -0,0 +1,162 @@
|
||||
import json
|
||||
from argparse import ArgumentParser
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
from PIL import Image
|
||||
import math
|
||||
import multiprocessing
|
||||
from multiprocessing import Pool, Queue, Manager
|
||||
from transformers import AutoModel, AutoTokenizer
|
||||
#https://github.com/InternLM/InternLM-XComposer/tree/main
|
||||
|
||||
def split_list(lst, n):
|
||||
length = len(lst)
|
||||
avg = length // n # 每份的大小
|
||||
result = [] # 存储分割后的子列表
|
||||
for i in range(n - 1):
|
||||
result.append(lst[i*avg:(i+1)*avg])
|
||||
result.append(lst[(n-1)*avg:])
|
||||
return result
|
||||
|
||||
def save_json(json_list,save_path):
|
||||
with open(save_path, 'w') as file:
|
||||
json.dump(json_list, file,indent=4)
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default='internlm/internlm-xcomposer2-vl-7b')#TODO Set the address of your model's weights
|
||||
parser.add_argument("--save_name", type=str, default="internlm-xcomposer2-vl-7b") #TODO Set the name of the JSON file you save in the output_folder.
|
||||
parser.add_argument("--num_workers", type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0,
|
||||
"Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,"Doc-oriented VQA":0,
|
||||
"Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0}
|
||||
AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
|
||||
def eval_worker(args, data, eval_id, output_queue):
|
||||
print(f"Process {eval_id} start.")
|
||||
checkpoint = args.model_path
|
||||
torch.set_grad_enabled(False)
|
||||
|
||||
# init model and tokenizer
|
||||
model = AutoModel.from_pretrained(checkpoint, trust_remote_code=True).cuda().eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
|
||||
|
||||
for i in tqdm(range(len(data))):
|
||||
img_path = os.path.join(args.image_folder, data[i]['image_path'])
|
||||
qs = data[i]['question']
|
||||
text = f'<ImageHere>{qs}'
|
||||
with torch.cuda.amp.autocast():
|
||||
response, _ = model.chat(tokenizer, query=text, image=img_path, history=[], do_sample=False)
|
||||
data[i]['predict'] = response
|
||||
output_queue.put({eval_id: data})
|
||||
print(f"Process {eval_id} has completed.")
|
||||
|
||||
if __name__=="__main__":
|
||||
multiprocessing.set_start_method('spawn')
|
||||
args = _get_args()
|
||||
|
||||
if os.path.exists(os.path.join(args.output_folder,f"{args.save_name}.json")):
|
||||
data_path = os.path.join(args.output_folder,f"{args.save_name}.json")
|
||||
print(f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}.")
|
||||
else:
|
||||
data_path = args.OCRBench_file
|
||||
|
||||
with open(data_path, "r") as f:
|
||||
data = json.load(f)
|
||||
|
||||
data_list = split_list(data, args.num_workers)
|
||||
|
||||
output_queue = Manager().Queue()
|
||||
|
||||
pool = Pool(processes=args.num_workers)
|
||||
for i in range(len(data_list)):
|
||||
pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue))
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
results = {}
|
||||
while not output_queue.empty():
|
||||
result = output_queue.get()
|
||||
results.update(result)
|
||||
data = []
|
||||
for i in range(len(data_list)):
|
||||
data.extend(results[i])
|
||||
|
||||
for i in range(len(data)):
|
||||
data_type = data[i]["type"]
|
||||
dataset_name = data[i]["dataset_name"]
|
||||
answers = data[i]["answers"]
|
||||
if data[i].get('predict',0)==0:
|
||||
continue
|
||||
predict = data[i]['predict']
|
||||
data[i]['result'] = 0
|
||||
if dataset_name == "HME100k":
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
save_json(data, os.path.join(args.output_folder,f"{args.save_name}.json"))
|
||||
if len(data)==1000:
|
||||
for i in range(len(data)):
|
||||
if data[i].get("result",100)==100:
|
||||
continue
|
||||
OCRBench_score[data[i]['type']] += data[i]['result']
|
||||
recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition']
|
||||
Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition']
|
||||
print("###########################OCRBench##############################")
|
||||
print(f"Text Recognition(Total 300):{recognition_score}")
|
||||
print("------------------Details of Recognition Score-------------------")
|
||||
print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}")
|
||||
print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}")
|
||||
print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}")
|
||||
print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}")
|
||||
print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}")
|
||||
print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}")
|
||||
print("----------------------Final Score-------------------------------")
|
||||
print(f"Final Score(Total 1000): {Final_score}")
|
||||
else:
|
||||
for i in range(len(data)):
|
||||
num_all[data[i]['dataset_name']] += 1
|
||||
if data[i].get("result",100)==100:
|
||||
continue
|
||||
AllDataset_score[data[i]['dataset_name']] += data[i]['result']
|
||||
for key in AllDataset_score.keys():
|
||||
print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")
|
178
scripts/intervl.py
Normal file
178
scripts/intervl.py
Normal file
@@ -0,0 +1,178 @@
|
||||
import json
|
||||
from argparse import ArgumentParser
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
from PIL import Image
|
||||
import math
|
||||
import multiprocessing
|
||||
from multiprocessing import Pool, Queue, Manager
|
||||
from PIL import Image
|
||||
from transformers import AutoModel, CLIPImageProcessor
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
#https://github.com/OpenGVLab/InternVL
|
||||
|
||||
def split_list(lst, n):
|
||||
length = len(lst)
|
||||
avg = length // n # 每份的大小
|
||||
result = [] # 存储分割后的子列表
|
||||
for i in range(n - 1):
|
||||
result.append(lst[i*avg:(i+1)*avg])
|
||||
result.append(lst[(n-1)*avg:])
|
||||
return result
|
||||
|
||||
def save_json(json_list,save_path):
|
||||
with open(save_path, 'w') as file:
|
||||
json.dump(json_list, file,indent=4)
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default='OpenGVLab/InternVL-Chat-Chinese-V1-1')#TODO Set the address of your model's weights
|
||||
parser.add_argument("--save_name", type=str, default="InternVL-Chat-Chinese-V1-1") #TODO Set the name of the JSON file you save in the output_folder.
|
||||
parser.add_argument("--num_workers", type=int, default=1)
|
||||
args = parser.parse_args()
|
||||
return args
|
||||
|
||||
OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0,
|
||||
"Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,"Doc-oriented VQA":0,
|
||||
"Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0}
|
||||
AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
|
||||
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
|
||||
|
||||
def eval_worker(args, data, eval_id, output_queue):
|
||||
print(f"Process {eval_id} start.")
|
||||
checkpoint = args.model_path
|
||||
model = AutoModel.from_pretrained(
|
||||
checkpoint,
|
||||
torch_dtype=torch.bfloat16,
|
||||
low_cpu_mem_usage=True,
|
||||
trust_remote_code=True,
|
||||
device_map='cuda').eval()
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
|
||||
|
||||
for i in tqdm(range(len(data))):
|
||||
img_path = os.path.join(args.image_folder, data[i]['image_path'])
|
||||
qs = data[i]['question']
|
||||
image = Image.open(img_path).convert('RGB')
|
||||
image = image.resize((448, 448))
|
||||
image_processor = CLIPImageProcessor.from_pretrained(checkpoint)
|
||||
|
||||
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
|
||||
pixel_values = pixel_values.to(torch.bfloat16).cuda()
|
||||
|
||||
generation_config = dict(
|
||||
num_beams=1,
|
||||
max_new_tokens=512,
|
||||
do_sample=False,
|
||||
)
|
||||
response = model.chat(tokenizer, pixel_values, qs, generation_config)
|
||||
data[i]['predict'] = response
|
||||
output_queue.put({eval_id: data})
|
||||
print(f"Process {eval_id} has completed.")
|
||||
|
||||
if __name__=="__main__":
|
||||
multiprocessing.set_start_method('spawn')
|
||||
args = _get_args()
|
||||
|
||||
if os.path.exists(os.path.join(args.output_folder,f"{args.save_name}.json")):
|
||||
data_path = os.path.join(args.output_folder,f"{args.save_name}.json")
|
||||
print(f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}.")
|
||||
else:
|
||||
data_path = args.OCRBench_file
|
||||
|
||||
with open(data_path, "r") as f:
|
||||
data = json.load(f)
|
||||
|
||||
data_list = split_list(data, args.num_workers)
|
||||
|
||||
output_queue = Manager().Queue()
|
||||
|
||||
pool = Pool(processes=args.num_workers)
|
||||
for i in range(len(data_list)):
|
||||
pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue))
|
||||
pool.close()
|
||||
pool.join()
|
||||
|
||||
results = {}
|
||||
while not output_queue.empty():
|
||||
result = output_queue.get()
|
||||
results.update(result)
|
||||
data = []
|
||||
for i in range(len(data_list)):
|
||||
data.extend(results[i])
|
||||
|
||||
for i in range(len(data)):
|
||||
data_type = data[i]["type"]
|
||||
dataset_name = data[i]["dataset_name"]
|
||||
answers = data[i]["answers"]
|
||||
if data[i].get('predict',0)==0:
|
||||
continue
|
||||
predict = data[i]['predict']
|
||||
data[i]['result'] = 0
|
||||
if dataset_name == "HME100k":
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.strip().replace("\n"," ").replace(" ","")
|
||||
predict = predict.strip().replace("\n"," ").replace(" ","")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
if type(answers)==list:
|
||||
for j in range(len(answers)):
|
||||
answer = answers[j].lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answer in predict:
|
||||
data[i]['result'] = 1
|
||||
else:
|
||||
answers = answers.lower().strip().replace("\n"," ")
|
||||
predict = predict.lower().strip().replace("\n"," ")
|
||||
if answers in predict:
|
||||
data[i]['result'] = 1
|
||||
save_json(data, os.path.join(args.output_folder,f"{args.save_name}.json"))
|
||||
if len(data)==1000:
|
||||
for i in range(len(data)):
|
||||
if data[i].get("result",100)==100:
|
||||
continue
|
||||
OCRBench_score[data[i]['type']] += data[i]['result']
|
||||
recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition']
|
||||
Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition']
|
||||
print("###########################OCRBench##############################")
|
||||
print(f"Text Recognition(Total 300):{recognition_score}")
|
||||
print("------------------Details of Recognition Score-------------------")
|
||||
print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}")
|
||||
print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}")
|
||||
print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}")
|
||||
print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}")
|
||||
print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}")
|
||||
print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}")
|
||||
print("----------------------------------------------------------------")
|
||||
print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}")
|
||||
print("----------------------Final Score-------------------------------")
|
||||
print(f"Final Score(Total 1000): {Final_score}")
|
||||
else:
|
||||
for i in range(len(data)):
|
||||
num_all[data[i]['dataset_name']] += 1
|
||||
if data[i].get("result",100)==100:
|
||||
continue
|
||||
AllDataset_score[data[i]['dataset_name']] += data[i]['result']
|
||||
for key in AllDataset_score.keys():
|
||||
print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")
|
@@ -71,7 +71,7 @@ def save_json(json_list,save_path):
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default="./model_weights/LLaVar")
|
||||
|
@@ -31,7 +31,7 @@ def save_json(json_list,save_path):
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default="./model_weights/mplug-owl")
|
||||
|
@@ -31,7 +31,7 @@ def save_json(json_list,save_path):
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default="./model_weights/mplug-owl2")
|
||||
|
@@ -33,7 +33,7 @@ def save_json(json_list,save_path):
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--cfg-path", default='./scripts/MiniGPT-4/eval_configs/minigptv2_eval.yaml')
|
||||
|
@@ -28,7 +28,7 @@ def save_json(json_list,save_path):
|
||||
|
||||
def _get_args():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("--image_folder", type=str, default="./data")
|
||||
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
||||
parser.add_argument("--output_folder", type=str, default="./results")
|
||||
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
||||
parser.add_argument("--model_path", type=str, default="echo840/Monkey")
|
||||
|
Reference in New Issue
Block a user