Cheng-Yen Yang f65f4ba181 Update README.md
2024-11-19 20:02:45 -08:00
2024-11-17 01:11:26 -08:00
2024-11-06 14:46:05 -08:00
2024-11-19 20:02:45 -08:00

🌊 SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory

[Arxiv] [Project Page]

This repository is the official implementation of SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory

https://github.com/user-attachments/assets/9d368ca7-2e9b-4fed-9da0-d2efbf620d88

Code

Coming soon!

Acknowledgment

SAMURAI is built on top of SAM 2 by Meta FAIR.

The VOT evaluation code is modifed from VOT Toolkit by Luka Čehovin Zajc.

Citation

Please consider citing our paper and the wonderful SAM 2 if you found our work interesting and useful.

@article{ravi2024sam2,
  title={SAM 2: Segment Anything in Images and Videos},
  author={Ravi, Nikhila and Gabeur, Valentin and Hu, Yuan-Ting and Hu, Ronghang and Ryali, Chaitanya and Ma, Tengyu and Khedr, Haitham and R{\"a}dle, Roman and Rolland, Chloe and Gustafson, Laura and Mintun, Eric and Pan, Junting and Alwala, Kalyan Vasudev and Carion, Nicolas and Wu, Chao-Yuan and Girshick, Ross and Doll{\'a}r, Piotr and Feichtenhofer, Christoph},
  journal={arXiv preprint arXiv:2408.00714},
  url={https://arxiv.org/abs/2408.00714},
  year={2024}
}

@misc{yang2024samurai,
      title={SAMURAI: Adapting Segment Anything Model for Zero-Shot Visual Tracking with Motion-Aware Memory}, 
      author={Cheng-Yen Yang and Hsiang-Wei Huang and Wenhao Chai and Zhongyu Jiang and Jenq-Neng Hwang},
      year={2024},
      eprint={2411.11922},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2411.11922}, 
}
Description
Languages
Jupyter Notebook 96.6%
Python 3.2%
Cuda 0.2%