support dump results in local demo
This commit is contained in:
@@ -1,35 +1,55 @@
|
||||
import os
|
||||
import cv2
|
||||
import json
|
||||
import torch
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
import pycocotools.mask as mask_util
|
||||
from pathlib import Path
|
||||
from torchvision.ops import box_convert
|
||||
from sam2.build_sam import build_sam2
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
from grounding_dino.groundingdino.util.inference import load_model, load_image, predict
|
||||
|
||||
"""
|
||||
Hyper parameters
|
||||
"""
|
||||
TEXT_PROMPT = "car. tire."
|
||||
IMG_PATH = "notebooks/images/truck.jpg"
|
||||
SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
|
||||
SAM2_MODEL_CONFIG = "sam2_hiera_l.yaml"
|
||||
GROUNDING_DINO_CONFIG = "grounding_dino/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
||||
GROUNDING_DINO_CHECKPOINT = "gdino_checkpoints/groundingdino_swint_ogc.pth"
|
||||
BOX_THRESHOLD = 0.35
|
||||
TEXT_THRESHOLD = 0.25
|
||||
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
OUTPUT_DIR = Path("outputs/grounded_sam2_local_demo")
|
||||
DUMP_JSON_RESULTS = True
|
||||
|
||||
# create output directory
|
||||
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
# environment settings
|
||||
# use bfloat16
|
||||
|
||||
# build SAM2 image predictor
|
||||
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
|
||||
model_cfg = "sam2_hiera_l.yaml"
|
||||
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
||||
sam2_checkpoint = SAM2_CHECKPOINT
|
||||
model_cfg = SAM2_MODEL_CONFIG
|
||||
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=DEVICE)
|
||||
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
||||
|
||||
# build grounding dino model
|
||||
model_id = "IDEA-Research/grounding-dino-tiny"
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
grounding_model = load_model(
|
||||
model_config_path="grounding_dino/groundingdino/config/GroundingDINO_SwinT_OGC.py",
|
||||
model_checkpoint_path="gdino_checkpoints/groundingdino_swint_ogc.pth",
|
||||
device=device
|
||||
model_config_path=GROUNDING_DINO_CONFIG,
|
||||
model_checkpoint_path=GROUNDING_DINO_CHECKPOINT,
|
||||
device=DEVICE
|
||||
)
|
||||
|
||||
|
||||
# setup the input image and text prompt for SAM 2 and Grounding DINO
|
||||
# VERY important: text queries need to be lowercased + end with a dot
|
||||
text = "car. tire."
|
||||
img_path = 'notebooks/images/truck.jpg'
|
||||
text = TEXT_PROMPT
|
||||
img_path = IMG_PATH
|
||||
|
||||
image_source, image = load_image(img_path)
|
||||
|
||||
@@ -39,8 +59,8 @@ boxes, confidences, labels = predict(
|
||||
model=grounding_model,
|
||||
image=image,
|
||||
caption=text,
|
||||
box_threshold=0.35,
|
||||
text_threshold=0.25
|
||||
box_threshold=BOX_THRESHOLD,
|
||||
text_threshold=TEXT_THRESHOLD,
|
||||
)
|
||||
|
||||
# process the box prompt for SAM 2
|
||||
@@ -98,8 +118,43 @@ annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections
|
||||
|
||||
label_annotator = sv.LabelAnnotator()
|
||||
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
||||
cv2.imwrite("groundingdino_annotated_image.jpg", annotated_frame)
|
||||
cv2.imwrite(os.path.join(OUTPUT_DIR, "groundingdino_annotated_image.jpg"), annotated_frame)
|
||||
|
||||
mask_annotator = sv.MaskAnnotator()
|
||||
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
||||
cv2.imwrite("grounded_sam2_annotated_image_with_mask.jpg", annotated_frame)
|
||||
cv2.imwrite(os.path.join(OUTPUT_DIR, "grounded_sam2_annotated_image_with_mask.jpg"), annotated_frame)
|
||||
|
||||
"""
|
||||
Dump the results in standard format and save as json files
|
||||
"""
|
||||
|
||||
def single_mask_to_rle(mask):
|
||||
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
|
||||
rle["counts"] = rle["counts"].decode("utf-8")
|
||||
return rle
|
||||
|
||||
if DUMP_JSON_RESULTS:
|
||||
# convert mask into rle format
|
||||
mask_rles = [single_mask_to_rle(mask) for mask in masks]
|
||||
|
||||
input_boxes = input_boxes.tolist()
|
||||
scores = scores.tolist()
|
||||
# save the results in standard format
|
||||
results = {
|
||||
"image_path": img_path,
|
||||
"annotations" : [
|
||||
{
|
||||
"class_name": class_name,
|
||||
"bbox": box,
|
||||
"segmentation": mask_rle,
|
||||
"score": score,
|
||||
}
|
||||
for class_name, box, mask_rle, score in zip(class_names, input_boxes, mask_rles, scores)
|
||||
],
|
||||
"box_format": "xyxy",
|
||||
"img_width": w,
|
||||
"img_height": h,
|
||||
}
|
||||
|
||||
with open(os.path.join(OUTPUT_DIR, "grounded_sam2_local_image_demo_results.json"), "w") as f:
|
||||
json.dump(results, f, indent=4)
|
Reference in New Issue
Block a user