add dino-x sam2 tracking demo
This commit is contained in:
11
README.md
11
README.md
@@ -21,7 +21,7 @@ Grounded SAM 2 does not introduce significant methodological changes compared to
|
||||
|
||||
## Latest updates
|
||||
|
||||
- `2024/12/02`: Support **DINO-X SAM 2 Demos**, please install the latest version of `dds-cloudapi-sdk` and refer to [Grounded SAM 2 (with DINO-X)](#grounded-sam-2-image-demo-with-dino-x) for more details.
|
||||
- `2024/12/02`: Support **DINO-X SAM 2 Demos** (including object segmentation and tracking), please install the latest version of `dds-cloudapi-sdk` and refer to [Grounded SAM 2 (with DINO-X)](#grounded-sam-2-image-demo-with-dino-x) and [Grounded SAM 2 Video (with DINO-X)](#grounded-sam-2-video-object-tracking-demo-with-custom-video-input-with-dino-x) for more details.
|
||||
- `2024/10/24`: Support [SAHI (Slicing Aided Hyper Inference)](https://docs.ultralytics.com/guides/sahi-tiled-inference/) on Grounded SAM 2 (with Grounding DINO 1.5) which may be helpful for inferencing high resolution image with dense small objects (e.g. **4K** images).
|
||||
- `2024/10/10`: Support `SAM-2.1` models, if you want to use `SAM 2.1` model, you need to update to the latest code and reinstall SAM 2 follow [SAM 2.1 Installation](https://github.com/facebookresearch/sam2?tab=readme-ov-file#latest-updates).
|
||||
- `2024/08/31`: Support `dump json results` in Grounded SAM 2 Image Demos (with Grounding DINO).
|
||||
@@ -41,6 +41,7 @@ Grounded SAM 2 does not introduce significant methodological changes compared to
|
||||
- [Grounded SAM 2 Video Object Tracking Demo (with Grounding DINO 1.5 & 1.6)](#grounded-sam-2-video-object-tracking-demo-with-grounding-dino-15--16)
|
||||
- [Grounded SAM 2 Video Object Tracking with Custom Video Input (using Grounding DINO)](#grounded-sam-2-video-object-tracking-demo-with-custom-video-input-with-grounding-dino)
|
||||
- [Grounded SAM 2 Video Object Tracking with Custom Video Input (using Grounding DINO 1.5 & 1.6)](#grounded-sam-2-video-object-tracking-demo-with-custom-video-input-with-grounding-dino-15--16)
|
||||
- [Grounded SAM 2 Video Object Tracking Demo (with DINO-X)](#grounded-sam-2-video-object-tracking-demo-with-custom-video-input-with-dino-x)
|
||||
- [Grounded SAM 2 Video Object Tracking with Continues ID (using Grounding DINO)](#grounded-sam-2-video-object-tracking-with-continuous-id-with-grounding-dino)
|
||||
- [Grounded SAM 2 Florence-2 Demos](#grounded-sam-2-florence-2-demos)
|
||||
- [Grounded SAM 2 Florence-2 Image Demo](#grounded-sam-2-florence-2-image-demo)
|
||||
@@ -280,6 +281,14 @@ And we will automatically save the tracking visualization results in `OUTPUT_VID
|
||||
> [!WARNING]
|
||||
> We initialize the box prompts on the first frame of the input video. If you want to start from different frame, you can refine `ann_frame_idx` by yourself in our code.
|
||||
|
||||
### Grounded SAM 2 Video Object Tracking Demo with Custom Video Input (with DINO-X)
|
||||
|
||||
Users can upload their own video file (e.g. `assets/hippopotamus.mp4`) and specify their custom text prompts for grounding and tracking with DINO-X and SAM 2 by using the following scripts:
|
||||
|
||||
```bash
|
||||
python grounded_sam2_tracking_demo_custom_video_input_dinox.py
|
||||
```
|
||||
|
||||
### Grounded-SAM-2 Video Object Tracking with Continuous ID (with Grounding DINO)
|
||||
|
||||
In above demos, we only prompt Grounded SAM 2 in specific frame, which may not be friendly to find new object during the whole video. In this demo, we try to **find new objects** and assign them with new ID across the whole video, this function is **still under develop**. it's not that stable now.
|
||||
|
234
grounded_sam2_tracking_demo_custom_video_input_dinox.py
Normal file
234
grounded_sam2_tracking_demo_custom_video_input_dinox.py
Normal file
@@ -0,0 +1,234 @@
|
||||
# dds cloudapi for Grounding DINO 1.5
|
||||
from dds_cloudapi_sdk import Config
|
||||
from dds_cloudapi_sdk import Client
|
||||
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
|
||||
from dds_cloudapi_sdk import TextPrompt
|
||||
|
||||
import os
|
||||
import cv2
|
||||
import torch
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
|
||||
from pathlib import Path
|
||||
from tqdm import tqdm
|
||||
from PIL import Image
|
||||
from sam2.build_sam import build_sam2_video_predictor, build_sam2
|
||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||
from utils.track_utils import sample_points_from_masks
|
||||
from utils.video_utils import create_video_from_images
|
||||
|
||||
"""
|
||||
Hyperparam for Ground and Tracking
|
||||
"""
|
||||
VIDEO_PATH = "./assets/hippopotamus.mp4"
|
||||
TEXT_PROMPT = "hippopotamus."
|
||||
OUTPUT_VIDEO_PATH = "./hippopotamus_tracking_demo.mp4"
|
||||
SOURCE_VIDEO_FRAME_DIR = "./custom_video_frames"
|
||||
SAVE_TRACKING_RESULTS_DIR = "./tracking_results"
|
||||
API_TOKEN_FOR_GD1_5 = "Your API token"
|
||||
PROMPT_TYPE_FOR_VIDEO = "box" # choose from ["point", "box", "mask"]
|
||||
BOX_THRESHOLD = 0.2
|
||||
|
||||
"""
|
||||
Step 1: Environment settings and model initialization for SAM 2
|
||||
"""
|
||||
# use bfloat16 for the entire notebook
|
||||
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
|
||||
|
||||
if torch.cuda.get_device_properties(0).major >= 8:
|
||||
# turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
# init sam image predictor and video predictor model
|
||||
sam2_checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
|
||||
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
|
||||
|
||||
video_predictor = build_sam2_video_predictor(model_cfg, sam2_checkpoint)
|
||||
sam2_image_model = build_sam2(model_cfg, sam2_checkpoint)
|
||||
image_predictor = SAM2ImagePredictor(sam2_image_model)
|
||||
|
||||
|
||||
# # `video_dir` a directory of JPEG frames with filenames like `<frame_index>.jpg`
|
||||
# video_dir = "notebooks/videos/bedroom"
|
||||
|
||||
"""
|
||||
Custom video input directly using video files
|
||||
"""
|
||||
video_info = sv.VideoInfo.from_video_path(VIDEO_PATH) # get video info
|
||||
print(video_info)
|
||||
frame_generator = sv.get_video_frames_generator(VIDEO_PATH, stride=1, start=0, end=None)
|
||||
|
||||
# saving video to frames
|
||||
source_frames = Path(SOURCE_VIDEO_FRAME_DIR)
|
||||
source_frames.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
with sv.ImageSink(
|
||||
target_dir_path=source_frames,
|
||||
overwrite=True,
|
||||
image_name_pattern="{:05d}.jpg"
|
||||
) as sink:
|
||||
for frame in tqdm(frame_generator, desc="Saving Video Frames"):
|
||||
sink.save_image(frame)
|
||||
|
||||
# scan all the JPEG frame names in this directory
|
||||
frame_names = [
|
||||
p for p in os.listdir(SOURCE_VIDEO_FRAME_DIR)
|
||||
if os.path.splitext(p)[-1] in [".jpg", ".jpeg", ".JPG", ".JPEG"]
|
||||
]
|
||||
frame_names.sort(key=lambda p: int(os.path.splitext(p)[0]))
|
||||
|
||||
# init video predictor state
|
||||
inference_state = video_predictor.init_state(video_path=SOURCE_VIDEO_FRAME_DIR)
|
||||
|
||||
ann_frame_idx = 0 # the frame index we interact with
|
||||
"""
|
||||
Step 2: Prompt DINO-X with Cloud API for box coordinates
|
||||
"""
|
||||
|
||||
# prompt grounding dino to get the box coordinates on specific frame
|
||||
img_path = os.path.join(SOURCE_VIDEO_FRAME_DIR, frame_names[ann_frame_idx])
|
||||
image = Image.open(img_path)
|
||||
|
||||
# Step 1: initialize the config
|
||||
config = Config(API_TOKEN_FOR_GD1_5)
|
||||
|
||||
# Step 2: initialize the client
|
||||
client = Client(config)
|
||||
|
||||
# Step 3: run the task by DetectionTask class
|
||||
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
|
||||
# if you are processing local image file, upload them to DDS server to get the image url
|
||||
image_url = client.upload_file(img_path)
|
||||
|
||||
task = DinoxTask(
|
||||
image_url=image_url,
|
||||
prompts=[TextPrompt(text=TEXT_PROMPT)]
|
||||
)
|
||||
|
||||
client.run_task(task)
|
||||
result = task.result
|
||||
|
||||
objects = result.objects # the list of detected objects
|
||||
|
||||
|
||||
input_boxes = []
|
||||
confidences = []
|
||||
class_names = []
|
||||
|
||||
for idx, obj in enumerate(objects):
|
||||
input_boxes.append(obj.bbox)
|
||||
confidences.append(obj.score)
|
||||
class_names.append(obj.category)
|
||||
|
||||
input_boxes = np.array(input_boxes)
|
||||
|
||||
print(input_boxes)
|
||||
|
||||
# prompt SAM image predictor to get the mask for the object
|
||||
image_predictor.set_image(np.array(image.convert("RGB")))
|
||||
|
||||
# process the detection results
|
||||
OBJECTS = class_names
|
||||
|
||||
print(OBJECTS)
|
||||
|
||||
# prompt SAM 2 image predictor to get the mask for the object
|
||||
masks, scores, logits = image_predictor.predict(
|
||||
point_coords=None,
|
||||
point_labels=None,
|
||||
box=input_boxes,
|
||||
multimask_output=False,
|
||||
)
|
||||
# convert the mask shape to (n, H, W)
|
||||
if masks.ndim == 4:
|
||||
masks = masks.squeeze(1)
|
||||
|
||||
"""
|
||||
Step 3: Register each object's positive points to video predictor with seperate add_new_points call
|
||||
"""
|
||||
|
||||
assert PROMPT_TYPE_FOR_VIDEO in ["point", "box", "mask"], "SAM 2 video predictor only support point/box/mask prompt"
|
||||
|
||||
# If you are using point prompts, we uniformly sample positive points based on the mask
|
||||
if PROMPT_TYPE_FOR_VIDEO == "point":
|
||||
# sample the positive points from mask for each objects
|
||||
all_sample_points = sample_points_from_masks(masks=masks, num_points=10)
|
||||
|
||||
for object_id, (label, points) in enumerate(zip(OBJECTS, all_sample_points), start=1):
|
||||
labels = np.ones((points.shape[0]), dtype=np.int32)
|
||||
_, out_obj_ids, out_mask_logits = video_predictor.add_new_points_or_box(
|
||||
inference_state=inference_state,
|
||||
frame_idx=ann_frame_idx,
|
||||
obj_id=object_id,
|
||||
points=points,
|
||||
labels=labels,
|
||||
)
|
||||
# Using box prompt
|
||||
elif PROMPT_TYPE_FOR_VIDEO == "box":
|
||||
for object_id, (label, box) in enumerate(zip(OBJECTS, input_boxes), start=1):
|
||||
_, out_obj_ids, out_mask_logits = video_predictor.add_new_points_or_box(
|
||||
inference_state=inference_state,
|
||||
frame_idx=ann_frame_idx,
|
||||
obj_id=object_id,
|
||||
box=box,
|
||||
)
|
||||
# Using mask prompt is a more straightforward way
|
||||
elif PROMPT_TYPE_FOR_VIDEO == "mask":
|
||||
for object_id, (label, mask) in enumerate(zip(OBJECTS, masks), start=1):
|
||||
labels = np.ones((1), dtype=np.int32)
|
||||
_, out_obj_ids, out_mask_logits = video_predictor.add_new_mask(
|
||||
inference_state=inference_state,
|
||||
frame_idx=ann_frame_idx,
|
||||
obj_id=object_id,
|
||||
mask=mask
|
||||
)
|
||||
else:
|
||||
raise NotImplementedError("SAM 2 video predictor only support point/box/mask prompts")
|
||||
|
||||
"""
|
||||
Step 4: Propagate the video predictor to get the segmentation results for each frame
|
||||
"""
|
||||
video_segments = {} # video_segments contains the per-frame segmentation results
|
||||
for out_frame_idx, out_obj_ids, out_mask_logits in video_predictor.propagate_in_video(inference_state):
|
||||
video_segments[out_frame_idx] = {
|
||||
out_obj_id: (out_mask_logits[i] > 0.0).cpu().numpy()
|
||||
for i, out_obj_id in enumerate(out_obj_ids)
|
||||
}
|
||||
|
||||
"""
|
||||
Step 5: Visualize the segment results across the video and save them
|
||||
"""
|
||||
|
||||
if not os.path.exists(SAVE_TRACKING_RESULTS_DIR):
|
||||
os.makedirs(SAVE_TRACKING_RESULTS_DIR)
|
||||
|
||||
ID_TO_OBJECTS = {i: obj for i, obj in enumerate(OBJECTS, start=1)}
|
||||
|
||||
for frame_idx, segments in video_segments.items():
|
||||
img = cv2.imread(os.path.join(SOURCE_VIDEO_FRAME_DIR, frame_names[frame_idx]))
|
||||
|
||||
object_ids = list(segments.keys())
|
||||
masks = list(segments.values())
|
||||
masks = np.concatenate(masks, axis=0)
|
||||
|
||||
detections = sv.Detections(
|
||||
xyxy=sv.mask_to_xyxy(masks), # (n, 4)
|
||||
mask=masks, # (n, h, w)
|
||||
class_id=np.array(object_ids, dtype=np.int32),
|
||||
)
|
||||
box_annotator = sv.BoxAnnotator()
|
||||
annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections)
|
||||
label_annotator = sv.LabelAnnotator()
|
||||
annotated_frame = label_annotator.annotate(annotated_frame, detections=detections, labels=[ID_TO_OBJECTS[i] for i in object_ids])
|
||||
mask_annotator = sv.MaskAnnotator()
|
||||
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
||||
cv2.imwrite(os.path.join(SAVE_TRACKING_RESULTS_DIR, f"annotated_frame_{frame_idx:05d}.jpg"), annotated_frame)
|
||||
|
||||
|
||||
"""
|
||||
Step 6: Convert the annotated frames to video
|
||||
"""
|
||||
|
||||
create_video_from_images(SAVE_TRACKING_RESULTS_DIR, OUTPUT_VIDEO_PATH)
|
Reference in New Issue
Block a user