init commit of samurai

This commit is contained in:
Cheng-Yen Yang
2024-11-19 22:12:54 -08:00
parent f65f4ba181
commit c17e4cecc0
679 changed files with 123982 additions and 0 deletions

View File

View File

@@ -0,0 +1,226 @@
import os
import os.path as osp
import sys
import numpy as np
from lib.test.utils.load_text import load_text
import torch
import pickle
from tqdm import tqdm
env_path = os.path.join(os.path.dirname(__file__), '../../..')
if env_path not in sys.path:
sys.path.append(env_path)
from lib.test.evaluation.environment import env_settings
def calc_err_center(pred_bb, anno_bb, normalized=False):
pred_center = pred_bb[:, :2] + 0.5 * (pred_bb[:, 2:] - 1.0)
anno_center = anno_bb[:, :2] + 0.5 * (anno_bb[:, 2:] - 1.0)
if normalized:
pred_center = pred_center / anno_bb[:, 2:]
anno_center = anno_center / anno_bb[:, 2:]
err_center = ((pred_center - anno_center)**2).sum(1).sqrt()
return err_center
def calc_iou_overlap(pred_bb, anno_bb):
tl = torch.max(pred_bb[:, :2], anno_bb[:, :2])
br = torch.min(pred_bb[:, :2] + pred_bb[:, 2:] - 1.0, anno_bb[:, :2] + anno_bb[:, 2:] - 1.0)
sz = (br - tl + 1.0).clamp(0)
# Area
intersection = sz.prod(dim=1)
union = pred_bb[:, 2:].prod(dim=1) + anno_bb[:, 2:].prod(dim=1) - intersection
return intersection / union
def calc_seq_err_robust(pred_bb, anno_bb, dataset, target_visible=None):
pred_bb = pred_bb.clone()
# Check if invalid values are present
if torch.isnan(pred_bb).any() or (pred_bb[:, 2:] < 0.0).any():
raise Exception('Error: Invalid results')
if torch.isnan(anno_bb).any():
if dataset == 'uav':
pass
else:
raise Exception('Warning: NaNs in annotation')
if (pred_bb[:, 2:] == 0.0).any():
for i in range(1, pred_bb.shape[0]):
if i >= anno_bb.shape[0]:
continue
if (pred_bb[i, 2:] == 0.0).any() and not torch.isnan(anno_bb[i, :]).any():
pred_bb[i, :] = pred_bb[i-1, :]
if pred_bb.shape[0] != anno_bb.shape[0]:
if dataset == 'lasot':
if pred_bb.shape[0] > anno_bb.shape[0]:
# For monkey-17, there is a mismatch for some trackers.
pred_bb = pred_bb[:anno_bb.shape[0], :]
else:
raise Exception('Mis-match in tracker prediction and GT lengths')
else:
# print('Warning: Mis-match in tracker prediction and GT lengths')
if pred_bb.shape[0] > anno_bb.shape[0]:
pred_bb = pred_bb[:anno_bb.shape[0], :]
else:
pad = torch.zeros((anno_bb.shape[0] - pred_bb.shape[0], 4)).type_as(pred_bb)
pred_bb = torch.cat((pred_bb, pad), dim=0)
pred_bb[0, :] = anno_bb[0, :]
if target_visible is not None:
target_visible = target_visible.bool()
valid = ((anno_bb[:, 2:] > 0.0).sum(1) == 2) & target_visible
else:
valid = ((anno_bb[:, 2:] > 0.0).sum(1) == 2)
err_center = calc_err_center(pred_bb, anno_bb)
err_center_normalized = calc_err_center(pred_bb, anno_bb, normalized=True)
err_overlap = calc_iou_overlap(pred_bb, anno_bb)
# handle invalid anno cases
if dataset in ['uav']:
err_center[~valid] = -1.0
else:
err_center[~valid] = float("Inf")
err_center_normalized[~valid] = -1.0
err_overlap[~valid] = -1.0
if dataset == 'lasot':
err_center_normalized[~target_visible] = float("Inf")
err_center[~target_visible] = float("Inf")
if torch.isnan(err_overlap).any():
raise Exception('Nans in calculated overlap')
return err_overlap, err_center, err_center_normalized, valid
def extract_results(trackers, dataset, report_name, skip_missing_seq=False, plot_bin_gap=0.05,
exclude_invalid_frames=False):
settings = env_settings()
eps = 1e-16
result_plot_path = os.path.join(settings.result_plot_path, report_name)
if not os.path.exists(result_plot_path):
os.makedirs(result_plot_path)
threshold_set_overlap = torch.arange(0.0, 1.0 + plot_bin_gap, plot_bin_gap, dtype=torch.float64)
threshold_set_center = torch.arange(0, 51, dtype=torch.float64)
threshold_set_center_norm = torch.arange(0, 51, dtype=torch.float64) / 100.0
avg_overlap_all = torch.zeros((len(dataset), len(trackers)), dtype=torch.float64)
ave_success_rate_plot_overlap = torch.zeros((len(dataset), len(trackers), threshold_set_overlap.numel()),
dtype=torch.float32)
ave_success_rate_plot_center = torch.zeros((len(dataset), len(trackers), threshold_set_center.numel()),
dtype=torch.float32)
ave_success_rate_plot_center_norm = torch.zeros((len(dataset), len(trackers), threshold_set_center.numel()),
dtype=torch.float32)
from collections import defaultdict
# default dict of default dict of list
valid_sequence = torch.ones(len(dataset), dtype=torch.uint8)
for seq_id, seq in enumerate(tqdm(dataset)):
frame_success_rate_plot_overlap = defaultdict(lambda: defaultdict(list))
frame_success_rate_plot_center = defaultdict(lambda: defaultdict(list))
frame_success_rate_plot_center_norm = defaultdict(lambda: defaultdict(list))
# Load anno
anno_bb = torch.tensor(seq.ground_truth_rect)
target_visible = torch.tensor(seq.target_visible, dtype=torch.uint8) if seq.target_visible is not None else None
for trk_id, trk in enumerate(trackers):
# Load results
base_results_path = '{}/{}'.format(trk.results_dir, seq.name)
results_path = '{}.txt'.format(base_results_path)
if os.path.isfile(results_path):
pred_bb = torch.tensor(load_text(str(results_path), delimiter=('\t', ','), dtype=np.float64))
else:
if skip_missing_seq:
valid_sequence[seq_id] = 0
break
else:
raise Exception('Result not found. {}'.format(results_path))
# Calculate measures
err_overlap, err_center, err_center_normalized, valid_frame = calc_seq_err_robust(
pred_bb, anno_bb, seq.dataset, target_visible)
avg_overlap_all[seq_id, trk_id] = err_overlap[valid_frame].mean()
if exclude_invalid_frames:
seq_length = valid_frame.long().sum()
else:
seq_length = anno_bb.shape[0]
if seq_length <= 0:
raise Exception('Seq length zero')
ave_success_rate_plot_overlap[seq_id, trk_id, :] = (err_overlap.view(-1, 1) > threshold_set_overlap.view(1, -1)).sum(0).float() / seq_length
ave_success_rate_plot_center[seq_id, trk_id, :] = (err_center.view(-1, 1) <= threshold_set_center.view(1, -1)).sum(0).float() / seq_length
ave_success_rate_plot_center_norm[seq_id, trk_id, :] = (err_center_normalized.view(-1, 1) <= threshold_set_center_norm.view(1, -1)).sum(0).float() / seq_length
# for frame_id in range(seq_length):
# frame_success_rate_plot_overlap[trk_id][frame_id].append((err_overlap[frame_id]).item())
# frame_success_rate_plot_center[trk_id][frame_id].append((err_center[frame_id]).item())
# frame_success_rate_plot_center_norm[trk_id][frame_id].append((err_center_normalized[frame_id] < 0.2).item())
# output_folder = "../cvpr2025/per_frame_success_rate"
# os.makedirs(output_folder, exist_ok=True)
# with open(osp.join(output_folder, f"{seq.name}.txt"), 'w') as f:
# for frame_id in range(seq_length):
# suc_score = frame_success_rate_plot_overlap[trk_id][frame_id][0]
# f.write(f"{suc_score}\n")
# # plot the average success rate, center normalized for each tracker
# # y axis: success rate
# # x axis: frame number
# # different color for each tracker
# # save the plot as a figure
# import matplotlib.pyplot as plt
# plt.figure(figsize=(10, 6))
# for trk_id, trk in enumerate(trackers):
# list_to_plot = [np.mean(frame_success_rate_plot_overlap[trk_id][frame_id]) for frame_id in range(2000)]
# # smooth the curve; window size = 10
# smooth_list_to_plot = np.convolve(list_to_plot, np.ones((10,))/10, mode='valid')
# # the smooth curve and non smooth curve have the same label
# plt.plot(smooth_list_to_plot, label=trk.display_name, alpha=1)
# plt.xlabel('Frame Number')
# plt.ylabel('Success Rate')
# plt.title('Average Success Rate Over Frames')
# plt.legend()
# plt.grid(True)
# plt.savefig('average_success_rate_plot_overlap.png')
# plt.close()
print('\n\nComputed results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
# Prepare dictionary for saving data
seq_names = [s.name for s in dataset]
tracker_names = [{'name': t.name, 'param': t.parameter_name, 'run_id': t.run_id, 'disp_name': t.display_name}
for t in trackers]
eval_data = {'sequences': seq_names, 'trackers': tracker_names,
'valid_sequence': valid_sequence.tolist(),
'ave_success_rate_plot_overlap': ave_success_rate_plot_overlap.tolist(),
'ave_success_rate_plot_center': ave_success_rate_plot_center.tolist(),
'ave_success_rate_plot_center_norm': ave_success_rate_plot_center_norm.tolist(),
'avg_overlap_all': avg_overlap_all.tolist(),
'threshold_set_overlap': threshold_set_overlap.tolist(),
'threshold_set_center': threshold_set_center.tolist(),
'threshold_set_center_norm': threshold_set_center_norm.tolist()}
with open(result_plot_path + '/eval_data.pkl', 'wb') as fh:
pickle.dump(eval_data, fh)
return eval_data

View File

@@ -0,0 +1,796 @@
import tikzplotlib
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import os
import os.path as osp
import torch
import pickle
import json
from lib.test.evaluation.environment import env_settings
from lib.test.analysis.extract_results import extract_results
def get_plot_draw_styles():
plot_draw_style = [
# {'color': (1.0, 0.0, 0.0), 'line_style': '-'},
# {'color': (0.0, 1.0, 0.0), 'line_style': '-'},
{'color': (0.0, 1.0, 0.0), 'line_style': '-'},
{'color': (0.0, 0.0, 0.0), 'line_style': '-'},
{'color': (1.0, 0.0, 1.0), 'line_style': '-'},
{'color': (0.0, 1.0, 1.0), 'line_style': '-'},
{'color': (0.5, 0.5, 0.5), 'line_style': '-'},
{'color': (136.0 / 255.0, 0.0, 21.0 / 255.0), 'line_style': '-'},
{'color': (1.0, 127.0 / 255.0, 39.0 / 255.0), 'line_style': '-'},
{'color': (0.0, 162.0 / 255.0, 232.0 / 255.0), 'line_style': '-'},
{'color': (0.0, 0.5, 0.0), 'line_style': '-'},
{'color': (1.0, 0.5, 0.2), 'line_style': '-'},
{'color': (0.1, 0.4, 0.0), 'line_style': '-'},
{'color': (0.6, 0.3, 0.9), 'line_style': '-'},
{'color': (0.4, 0.7, 0.1), 'line_style': '-'},
{'color': (0.2, 0.1, 0.7), 'line_style': '-'},
{'color': (0.7, 0.6, 0.2), 'line_style': '-'}]
return plot_draw_style
def check_eval_data_is_valid(eval_data, trackers, dataset):
""" Checks if the pre-computed results are valid"""
seq_names = [s.name for s in dataset]
seq_names_saved = eval_data['sequences']
tracker_names_f = [(t.name, t.parameter_name, t.run_id) for t in trackers]
tracker_names_f_saved = [(t['name'], t['param'], t['run_id']) for t in eval_data['trackers']]
return seq_names == seq_names_saved and tracker_names_f == tracker_names_f_saved
def merge_multiple_runs(eval_data):
new_tracker_names = []
ave_success_rate_plot_overlap_merged = []
ave_success_rate_plot_center_merged = []
ave_success_rate_plot_center_norm_merged = []
avg_overlap_all_merged = []
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
avg_overlap_all = torch.tensor(eval_data['avg_overlap_all'])
trackers = eval_data['trackers']
merged = torch.zeros(len(trackers), dtype=torch.uint8)
for i in range(len(trackers)):
if merged[i]:
continue
base_tracker = trackers[i]
new_tracker_names.append(base_tracker)
match = [t['name'] == base_tracker['name'] and t['param'] == base_tracker['param'] for t in trackers]
match = torch.tensor(match)
ave_success_rate_plot_overlap_merged.append(ave_success_rate_plot_overlap[:, match, :].mean(1))
ave_success_rate_plot_center_merged.append(ave_success_rate_plot_center[:, match, :].mean(1))
ave_success_rate_plot_center_norm_merged.append(ave_success_rate_plot_center_norm[:, match, :].mean(1))
avg_overlap_all_merged.append(avg_overlap_all[:, match].mean(1))
merged[match] = 1
ave_success_rate_plot_overlap_merged = torch.stack(ave_success_rate_plot_overlap_merged, dim=1)
ave_success_rate_plot_center_merged = torch.stack(ave_success_rate_plot_center_merged, dim=1)
ave_success_rate_plot_center_norm_merged = torch.stack(ave_success_rate_plot_center_norm_merged, dim=1)
avg_overlap_all_merged = torch.stack(avg_overlap_all_merged, dim=1)
eval_data['trackers'] = new_tracker_names
eval_data['ave_success_rate_plot_overlap'] = ave_success_rate_plot_overlap_merged.tolist()
eval_data['ave_success_rate_plot_center'] = ave_success_rate_plot_center_merged.tolist()
eval_data['ave_success_rate_plot_center_norm'] = ave_success_rate_plot_center_norm_merged.tolist()
eval_data['avg_overlap_all'] = avg_overlap_all_merged.tolist()
return eval_data
def get_tracker_display_name(tracker):
if tracker['disp_name'] is None:
if tracker['run_id'] is None:
disp_name = '{}_{}'.format(tracker['name'], tracker['param'])
else:
disp_name = '{}_{}_{:03d}'.format(tracker['name'], tracker['param'],
tracker['run_id'])
else:
disp_name = tracker['disp_name']
return disp_name
def plot_draw_save(y, x, scores, trackers, plot_draw_styles, result_plot_path, plot_opts):
plt.rcParams['text.usetex']=True
plt.rcParams["font.family"] = "Times New Roman"
# Plot settings
font_size = plot_opts.get('font_size', 25)
font_size_axis = plot_opts.get('font_size_axis', 20)
line_width = plot_opts.get('line_width', 2)
font_size_legend = plot_opts.get('font_size_legend', 15)
plot_type = plot_opts['plot_type']
legend_loc = plot_opts['legend_loc']
if 'attr' in plot_opts:
attr = plot_opts['attr']
else:
attr = None
xlabel = plot_opts['xlabel']
ylabel = plot_opts['ylabel']
ylabel = "%s"%(ylabel.replace('%','\%'))
xlim = plot_opts['xlim']
ylim = plot_opts['ylim']
title = r"\textbf{%s}" %(plot_opts['title'])
print
matplotlib.rcParams.update({'font.size': font_size})
matplotlib.rcParams.update({'axes.titlesize': font_size_axis})
matplotlib.rcParams.update({'axes.titleweight': 'black'})
matplotlib.rcParams.update({'axes.labelsize': font_size_axis})
fig, ax = plt.subplots()
index_sort = scores.argsort(descending=False)
plotted_lines = []
legend_text = []
for id, id_sort in enumerate(index_sort):
if trackers[id_sort]['disp_name'].startswith('SAMURAI'):
alpha = 1.0
line_style = '-'
if trackers[id_sort]['disp_name'] == 'SAMURAI-L':
color = (1.0, 0.0, 0.0)
elif trackers[id_sort]['disp_name'] == 'SAMURAI-B':
color = (0.0, 0.0, 1.0)
elif trackers[id_sort]['disp_name'].startswith('SAM2.1'):
alpha = 0.8
line_style = '--'
if trackers[id_sort]['disp_name'] == 'SAM2.1-L':
color = (1.0, 0.0, 0.0)
elif trackers[id_sort]['disp_name'] == 'SAM2.1-B':
color = (0.0, 0.0, 1.0)
else:
alpha = 0.5
color = plot_draw_styles[index_sort.numel() - id - 1]['color']
line_style = ":"
line = ax.plot(x.tolist(), y[id_sort, :].tolist(),
linewidth=line_width,
color=color,
linestyle=line_style,
alpha=alpha)
plotted_lines.append(line[0])
tracker = trackers[id_sort]
disp_name = get_tracker_display_name(tracker)
legend_text.append('{} [{:.1f}]'.format(disp_name, scores[id_sort]))
try:
# add bold to top method
# for i in range(1,2):
# legend_text[-i] = r'\textbf{%s}'%(legend_text[-i])
for id, id_sort in enumerate(index_sort):
if trackers[id_sort]['disp_name'].startswith('SAMTrack'):
legend_text[id] = r'\textbf{%s}'%(legend_text[id])
ax.legend(plotted_lines[::-1], legend_text[::-1], loc=legend_loc, fancybox=False, edgecolor='black',
fontsize=font_size_legend, framealpha=1.0)
except:
pass
ax.set(xlabel=xlabel,
ylabel=ylabel,
xlim=xlim, ylim=ylim,
title=title)
ax.grid(True, linestyle='-.')
fig.tight_layout()
def tikzplotlib_fix_ncols(obj):
"""
workaround for matplotlib 3.6 renamed legend's _ncol to _ncols, which breaks tikzplotlib
"""
if hasattr(obj, "_ncols"):
obj._ncol = obj._ncols
for child in obj.get_children():
tikzplotlib_fix_ncols(child)
tikzplotlib_fix_ncols(fig)
# tikzplotlib.save('{}/{}_plot.tex'.format(result_plot_path, plot_type))
if attr is not None:
fig.savefig('{}/{}_{}_plot.pdf'.format(result_plot_path, plot_type, attr), dpi=300, format='pdf', transparent=True)
else:
fig.savefig('{}/{}_plot.pdf'.format(result_plot_path, plot_type), dpi=300, format='pdf', transparent=True)
plt.draw()
def check_and_load_precomputed_results(trackers, dataset, report_name, force_evaluation=False, **kwargs):
# Load data
settings = env_settings()
# Load pre-computed results
result_plot_path = os.path.join(settings.result_plot_path, report_name)
eval_data_path = os.path.join(result_plot_path, 'eval_data.pkl')
if os.path.isfile(eval_data_path) and not force_evaluation:
with open(eval_data_path, 'rb') as fh:
eval_data = pickle.load(fh)
else:
# print('Pre-computed evaluation data not found. Computing results!')
eval_data = extract_results(trackers, dataset, report_name, **kwargs)
if not check_eval_data_is_valid(eval_data, trackers, dataset):
# print('Pre-computed evaluation data invalid. Re-computing results!')
eval_data = extract_results(trackers, dataset, report_name, **kwargs)
# pass
else:
# Update display names
tracker_names = [{'name': t.name, 'param': t.parameter_name, 'run_id': t.run_id, 'disp_name': t.display_name}
for t in trackers]
eval_data['trackers'] = tracker_names
with open(eval_data_path, 'wb') as fh:
pickle.dump(eval_data, fh)
return eval_data
def get_auc_curve(ave_success_rate_plot_overlap, valid_sequence):
ave_success_rate_plot_overlap = ave_success_rate_plot_overlap[valid_sequence, :, :]
auc_curve = ave_success_rate_plot_overlap.mean(0) * 100.0
auc = auc_curve.mean(-1)
return auc_curve, auc
def get_prec_curve(ave_success_rate_plot_center, valid_sequence):
ave_success_rate_plot_center = ave_success_rate_plot_center[valid_sequence, :, :]
prec_curve = ave_success_rate_plot_center.mean(0) * 100.0
prec_score = prec_curve[:, 20]
return prec_curve, prec_score
def plot_per_attribute_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), **kwargs):
# Load data
settings = env_settings()
plot_draw_styles = get_plot_draw_styles()
# Load pre-computed results
result_plot_path = os.path.join(settings.result_plot_path, report_name)
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
attr_folder = 'data/LaSOT/att'
attr_list = ['Illumination Variation', 'Partial Occlusion', 'Deformation', 'Motion Blur', 'Camera Motion', 'Rotation', 'Background Clutter', 'Viewpoint Change', 'Scale Variation', 'Full Occlusion', 'Fast Motion', 'Out-of-View', 'Low Resolution', 'Aspect Ration Change']
attr_list = ['IV', 'POC', 'DEF', 'MB', 'CM', 'ROT', 'BC', 'VC', 'SV', 'FOC', 'FM', 'OV', 'LR', 'ARC']
# Iterate over the sequence and construct a valid_sequence for each attribute
valid_sequence_attr = {}
for attr in attr_list:
valid_sequence_attr[attr] = torch.zeros(valid_sequence.shape[0], dtype=torch.bool)
for seq_id, seq_obj in enumerate(dataset):
seq_name = seq_obj.name
attr_txt = osp.join(attr_folder, f'{seq_name}.txt')
if osp.exists(attr_txt):
# read the attribute file into a list of True and False
# the attribute file looks like this: 0,0,0,0,0,1,0,1,1,0,0,0,0,0
attr_anno = np.loadtxt(attr_txt, dtype=int, delimiter=',')
# broadcast the valid_sequence to the attribute list
for attr_id, attr in enumerate(attr_list):
valid_sequence_attr[attr][seq_id] = attr_anno[attr_id]
else:
raise Exception(f'Attribute file not found for sequence {seq_name}')
tracker_names = eval_data['trackers']
if report_name == 'LaSOT-ext':
ylim_success = (0, 95)
ylim_precision = (0, 85)
ylim_norm_precision = (0, 85)
report_name = "LaSOT_{ext}"
else:
ylim_success = (0, 95)
ylim_precision = (0, 100)
ylim_norm_precision = (0, 88)
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
for attr in attr_list:
scores = {}
print(f'{attr}: {valid_sequence_attr[attr].sum().item()}')
valid_sequence_attr[attr] = valid_sequence_attr[attr] & valid_sequence
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence_attr[attr])
scores['AUC'] = auc
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence_attr[attr])
scores['Precision'] = prec_score
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence_attr[attr])
scores['Norm Precision'] = norm_prec_score
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=attr)
print(report_text)
success_plot_opts = {'plot_type': 'success', 'legend_loc': 'lower left', 'xlabel': 'Overlap threshold', 'attr': attr,
'ylabel': 'Overlap Precision [%]', 'xlim': (0, 1.0), 'ylim': ylim_success, 'title': f'Success\ of\ {attr}\ ({report_name})'}
plot_draw_save(auc_curve, threshold_set_overlap, auc, tracker_names, plot_draw_styles, result_plot_path, success_plot_opts)
def plot_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), force_evaluation=False, **kwargs):
"""
Plot results for the given trackers
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
plot_types - List of scores to display. Can contain 'success',
'prec' (precision), and 'norm_prec' (normalized precision)
"""
# Load data
settings = env_settings()
plot_draw_styles = get_plot_draw_styles()
# Load pre-computed results
result_plot_path = os.path.join(settings.result_plot_path, report_name)
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, force_evaluation, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
print('\nPlotting results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
print('\nGenerating plots for: {}'.format(report_name))
print(report_name)
if report_name == 'LaSOT':
ylim_success = (0, 95)
ylim_precision = (0, 95)
ylim_norm_precision = (0, 95)
elif report_name == 'LaSOT-ext':
ylim_success = (0, 85)
ylim_precision = (0, 85)
ylim_norm_precision = (0, 85)
else:
ylim_success = (0, 85)
ylim_precision = (0, 85)
ylim_norm_precision = (0, 85)
# ******************************** Success Plot **************************************
if 'success' in plot_types:
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
success_plot_opts = {'plot_type': 'success', 'legend_loc': 'lower left', 'xlabel': 'Overlap threshold',
'ylabel': 'Overlap Precision [%]', 'xlim': (0, 1.0), 'ylim': ylim_success, 'title': f'Success\ ({report_name})'}
plot_draw_save(auc_curve, threshold_set_overlap, auc, tracker_names, plot_draw_styles, result_plot_path, success_plot_opts)
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
threshold_set_center = torch.tensor(eval_data['threshold_set_center'])
precision_plot_opts = {'plot_type': 'precision', 'legend_loc': 'lower right',
'xlabel': 'Location error threshold [pixels]', 'ylabel': 'Distance Precision [%]',
'xlim': (0, 50), 'ylim': ylim_precision, 'title': f'Precision\ ({report_name})'}
plot_draw_save(prec_curve, threshold_set_center, prec_score, tracker_names, plot_draw_styles, result_plot_path,
precision_plot_opts)
# ******************************** Norm Precision Plot **************************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
threshold_set_center_norm = torch.tensor(eval_data['threshold_set_center_norm'])
norm_precision_plot_opts = {'plot_type': 'norm_precision', 'legend_loc': 'lower right',
'xlabel': 'Location error threshold', 'ylabel': 'Distance Precision [%]',
'xlim': (0, 0.5), 'ylim': ylim_norm_precision, 'title': f'Normalized\ Precision\ ({report_name})'}
plot_draw_save(prec_curve, threshold_set_center_norm, prec_score, tracker_names, plot_draw_styles, result_plot_path,
norm_precision_plot_opts)
plt.show()
def generate_formatted_report(row_labels, scores, table_name=''):
name_width = max([len(d) for d in row_labels] + [len(table_name)]) + 5
min_score_width = 10
report_text = '\n{label: <{width}} |'.format(label=table_name, width=name_width)
score_widths = [max(min_score_width, len(k) + 3) for k in scores.keys()]
for s, s_w in zip(scores.keys(), score_widths):
report_text = '{prev} {s: <{width}} |'.format(prev=report_text, s=s, width=s_w)
report_text = '{prev}\n'.format(prev=report_text)
for trk_id, d_name in enumerate(row_labels):
# display name
report_text = '{prev}{tracker: <{width}} |'.format(prev=report_text, tracker=d_name,
width=name_width)
for (score_type, score_value), s_w in zip(scores.items(), score_widths):
report_text = '{prev} {score: <{width}} |'.format(prev=report_text,
score='{:0.2f}'.format(score_value[trk_id].item()),
width=s_w)
report_text = '{prev}\n'.format(prev=report_text)
return report_text
def print_per_attribute_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), **kwargs):
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
attr_folder = 'data/LaSOT/att'
attr_list = ['Illumination Variation', 'Partial Occlusion', 'Deformation', 'Motion Blur', 'Camera Motion', 'Rotation', 'Background Clutter', 'Viewpoint Change', 'Scale Variation', 'Full Occlusion', 'Fast Motion', 'Out-of-View', 'Low Resolution', 'Aspect Ration Change']
attr_list = ['IV', 'POC', 'DEF', 'MB', 'CM', 'ROT', 'BC', 'VC', 'SV', 'FOC', 'FM', 'OV', 'LR', 'ARC']
# Iterate over the sequence and construct a valid_sequence for each attribute
valid_sequence_attr = {}
for attr in attr_list:
valid_sequence_attr[attr] = torch.zeros(valid_sequence.shape[0], dtype=torch.bool)
for seq_id, seq_obj in enumerate(dataset):
seq_name = seq_obj.name
attr_txt = osp.join(attr_folder, f'{seq_name}.txt')
if osp.exists(attr_txt):
# read the attribute file into a list of True and False
# the attribute file looks like this: 0,0,0,0,0,1,0,1,1,0,0,0,0,0
attr_anno = np.loadtxt(attr_txt, dtype=int, delimiter=',')
# broadcast the valid_sequence to the attribute list
for attr_id, attr in enumerate(attr_list):
valid_sequence_attr[attr][seq_id] = attr_anno[attr_id]
else:
raise Exception(f'Attribute file not found for sequence {seq_name}')
tracker_names = eval_data['trackers']
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
for attr in attr_list:
scores = {}
print(f'{attr}: {valid_sequence_attr[attr].sum().item()}')
valid_sequence_attr[attr] = valid_sequence_attr[attr] & valid_sequence
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence_attr[attr])
scores['AUC'] = auc
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence_attr[attr])
scores['Precision'] = prec_score
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence_attr[attr])
scores['Norm Precision'] = norm_prec_score
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=attr)
print(report_text)
def print_results(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), **kwargs):
""" Print the results for the given trackers in a formatted table
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
plot_types - List of scores to display. Can contain 'success' (prints AUC, OP50, and OP75 scores),
'prec' (prints precision score), and 'norm_prec' (prints normalized precision score)
"""
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
print('\nReporting results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
scores = {}
# ******************************** Success Plot **************************************
if 'success' in plot_types:
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
scores['AUC'] = auc
scores['OP50'] = auc_curve[:, threshold_set_overlap == 0.50]
scores['OP75'] = auc_curve[:, threshold_set_overlap == 0.75]
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
scores['Precision'] = prec_score
# ******************************** Norm Precision Plot *********************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
scores['Norm Precision'] = norm_prec_score
# Print
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=report_name)
print(report_text)
def plot_got_success(trackers, report_name):
""" Plot success plot for GOT-10k dataset using the json reports.
Save the json reports from http://got-10k.aitestunion.com/leaderboard in the directory set to
env_settings.got_reports_path
The tracker name in the experiment file should be set to the name of the report file for that tracker,
e.g. DiMP50_report_2019_09_02_15_44_25 if the report is name DiMP50_report_2019_09_02_15_44_25.json
args:
trackers - List of trackers to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
"""
# Load data
settings = env_settings()
plot_draw_styles = get_plot_draw_styles()
result_plot_path = os.path.join(settings.result_plot_path, report_name)
auc_curve = torch.zeros((len(trackers), 101))
scores = torch.zeros(len(trackers))
# Load results
tracker_names = []
for trk_id, trk in enumerate(trackers):
json_path = '{}/{}.json'.format(settings.got_reports_path, trk.name)
if os.path.isfile(json_path):
with open(json_path, 'r') as f:
eval_data = json.load(f)
else:
raise Exception('Report not found {}'.format(json_path))
if len(eval_data.keys()) > 1:
raise Exception
# First field is the tracker name. Index it out
eval_data = eval_data[list(eval_data.keys())[0]]
if 'succ_curve' in eval_data.keys():
curve = eval_data['succ_curve']
ao = eval_data['ao']
elif 'overall' in eval_data.keys() and 'succ_curve' in eval_data['overall'].keys():
curve = eval_data['overall']['succ_curve']
ao = eval_data['overall']['ao']
else:
raise Exception('Invalid JSON file {}'.format(json_path))
auc_curve[trk_id, :] = torch.tensor(curve) * 100.0
scores[trk_id] = ao * 100.0
tracker_names.append({'name': trk.name, 'param': trk.parameter_name, 'run_id': trk.run_id,
'disp_name': trk.display_name})
threshold_set_overlap = torch.arange(0.0, 1.01, 0.01, dtype=torch.float64)
success_plot_opts = {'plot_type': 'success', 'legend_loc': 'lower left', 'xlabel': 'Overlap threshold',
'ylabel': 'Overlap Precision [%]', 'xlim': (0, 1.0), 'ylim': (0, 100), 'title': 'Success plot'}
plot_draw_save(auc_curve, threshold_set_overlap, scores, tracker_names, plot_draw_styles, result_plot_path,
success_plot_opts)
plt.show()
def print_per_sequence_results(trackers, dataset, report_name, merge_results=False,
filter_criteria=None, **kwargs):
""" Print per-sequence results for the given trackers. Additionally, the sequences to list can be filtered using
the filter criteria.
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
filter_criteria - Filter sequence results which are reported. Following modes are supported
None: No filtering. Display results for all sequences in dataset
'ao_min': Only display sequences for which the minimum average overlap (AO) score over the
trackers is less than a threshold filter_criteria['threshold']. This mode can
be used to select sequences where at least one tracker performs poorly.
'ao_max': Only display sequences for which the maximum average overlap (AO) score over the
trackers is less than a threshold filter_criteria['threshold']. This mode can
be used to select sequences all tracker performs poorly.
'delta_ao': Only display sequences for which the performance of different trackers vary by at
least filter_criteria['threshold'] in average overlap (AO) score. This mode can
be used to select sequences where the behaviour of the trackers greatly differ
between each other.
"""
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
sequence_names = eval_data['sequences']
avg_overlap_all = torch.tensor(eval_data['avg_overlap_all']) * 100.0
# Filter sequences
if filter_criteria is not None:
if filter_criteria['mode'] == 'ao_min':
min_ao = avg_overlap_all.min(dim=1)[0]
valid_sequence = valid_sequence & (min_ao < filter_criteria['threshold'])
elif filter_criteria['mode'] == 'ao_max':
max_ao = avg_overlap_all.max(dim=1)[0]
valid_sequence = valid_sequence & (max_ao < filter_criteria['threshold'])
elif filter_criteria['mode'] == 'delta_ao':
min_ao = avg_overlap_all.min(dim=1)[0]
max_ao = avg_overlap_all.max(dim=1)[0]
valid_sequence = valid_sequence & ((max_ao - min_ao) > filter_criteria['threshold'])
else:
raise Exception
avg_overlap_all = avg_overlap_all[valid_sequence, :]
sequence_names = [s + ' (ID={})'.format(i) for i, (s, v) in enumerate(zip(sequence_names, valid_sequence.tolist())) if v]
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
scores_per_tracker = {k: avg_overlap_all[:, i] for i, k in enumerate(tracker_disp_names)}
report_text = generate_formatted_report(sequence_names, scores_per_tracker)
print(report_text)
def print_results_per_video(trackers, dataset, report_name, merge_results=False,
plot_types=('success'), per_video=False, **kwargs):
""" Print the results for the given trackers in a formatted table
args:
trackers - List of trackers to evaluate
dataset - List of sequences to evaluate
report_name - Name of the folder in env_settings.perm_mat_path where the computed results and plots are saved
merge_results - If True, multiple random runs for a non-deterministic trackers are averaged
plot_types - List of scores to display. Can contain 'success' (prints AUC, OP50, and OP75 scores),
'prec' (prints precision score), and 'norm_prec' (prints normalized precision score)
"""
# Load pre-computed results
eval_data = check_and_load_precomputed_results(trackers, dataset, report_name, **kwargs)
# Merge results from multiple runs
if merge_results:
eval_data = merge_multiple_runs(eval_data)
seq_lens = len(eval_data['sequences'])
eval_datas = [{} for _ in range(seq_lens)]
if per_video:
for key, value in eval_data.items():
if len(value) == seq_lens:
for i in range(seq_lens):
eval_datas[i][key] = [value[i]]
else:
for i in range(seq_lens):
eval_datas[i][key] = value
tracker_names = eval_data['trackers']
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
print('\nReporting results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
scores = {}
# ******************************** Success Plot **************************************
if 'success' in plot_types:
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
scores['AUC'] = auc
scores['OP50'] = auc_curve[:, threshold_set_overlap == 0.50]
scores['OP75'] = auc_curve[:, threshold_set_overlap == 0.75]
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
scores['Precision'] = prec_score
# ******************************** Norm Precision Plot *********************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
scores['Norm Precision'] = norm_prec_score
# Print
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=report_name)
print(report_text)
if per_video:
for i in range(seq_lens):
eval_data = eval_datas[i]
print('\n{} sequences'.format(eval_data['sequences'][0]))
scores = {}
valid_sequence = torch.tensor(eval_data['valid_sequence'], dtype=torch.bool)
# ******************************** Success Plot **************************************
if 'success' in plot_types:
threshold_set_overlap = torch.tensor(eval_data['threshold_set_overlap'])
ave_success_rate_plot_overlap = torch.tensor(eval_data['ave_success_rate_plot_overlap'])
# Index out valid sequences
auc_curve, auc = get_auc_curve(ave_success_rate_plot_overlap, valid_sequence)
scores['AUC'] = auc
scores['OP50'] = auc_curve[:, threshold_set_overlap == 0.50]
scores['OP75'] = auc_curve[:, threshold_set_overlap == 0.75]
# ******************************** Precision Plot **************************************
if 'prec' in plot_types:
ave_success_rate_plot_center = torch.tensor(eval_data['ave_success_rate_plot_center'])
# Index out valid sequences
prec_curve, prec_score = get_prec_curve(ave_success_rate_plot_center, valid_sequence)
scores['Precision'] = prec_score
# ******************************** Norm Precision Plot *********************************
if 'norm_prec' in plot_types:
ave_success_rate_plot_center_norm = torch.tensor(eval_data['ave_success_rate_plot_center_norm'])
# Index out valid sequences
norm_prec_curve, norm_prec_score = get_prec_curve(ave_success_rate_plot_center_norm, valid_sequence)
scores['Norm Precision'] = norm_prec_score
# Print
tracker_disp_names = [get_tracker_display_name(trk) for trk in tracker_names]
report_text = generate_formatted_report(tracker_disp_names, scores, table_name=report_name)
print(report_text)