Files
Grounded-SAM-2/lib/test/analysis/extract_results.py
2024-11-19 22:12:54 -08:00

227 lines
9.6 KiB
Python

import os
import os.path as osp
import sys
import numpy as np
from lib.test.utils.load_text import load_text
import torch
import pickle
from tqdm import tqdm
env_path = os.path.join(os.path.dirname(__file__), '../../..')
if env_path not in sys.path:
sys.path.append(env_path)
from lib.test.evaluation.environment import env_settings
def calc_err_center(pred_bb, anno_bb, normalized=False):
pred_center = pred_bb[:, :2] + 0.5 * (pred_bb[:, 2:] - 1.0)
anno_center = anno_bb[:, :2] + 0.5 * (anno_bb[:, 2:] - 1.0)
if normalized:
pred_center = pred_center / anno_bb[:, 2:]
anno_center = anno_center / anno_bb[:, 2:]
err_center = ((pred_center - anno_center)**2).sum(1).sqrt()
return err_center
def calc_iou_overlap(pred_bb, anno_bb):
tl = torch.max(pred_bb[:, :2], anno_bb[:, :2])
br = torch.min(pred_bb[:, :2] + pred_bb[:, 2:] - 1.0, anno_bb[:, :2] + anno_bb[:, 2:] - 1.0)
sz = (br - tl + 1.0).clamp(0)
# Area
intersection = sz.prod(dim=1)
union = pred_bb[:, 2:].prod(dim=1) + anno_bb[:, 2:].prod(dim=1) - intersection
return intersection / union
def calc_seq_err_robust(pred_bb, anno_bb, dataset, target_visible=None):
pred_bb = pred_bb.clone()
# Check if invalid values are present
if torch.isnan(pred_bb).any() or (pred_bb[:, 2:] < 0.0).any():
raise Exception('Error: Invalid results')
if torch.isnan(anno_bb).any():
if dataset == 'uav':
pass
else:
raise Exception('Warning: NaNs in annotation')
if (pred_bb[:, 2:] == 0.0).any():
for i in range(1, pred_bb.shape[0]):
if i >= anno_bb.shape[0]:
continue
if (pred_bb[i, 2:] == 0.0).any() and not torch.isnan(anno_bb[i, :]).any():
pred_bb[i, :] = pred_bb[i-1, :]
if pred_bb.shape[0] != anno_bb.shape[0]:
if dataset == 'lasot':
if pred_bb.shape[0] > anno_bb.shape[0]:
# For monkey-17, there is a mismatch for some trackers.
pred_bb = pred_bb[:anno_bb.shape[0], :]
else:
raise Exception('Mis-match in tracker prediction and GT lengths')
else:
# print('Warning: Mis-match in tracker prediction and GT lengths')
if pred_bb.shape[0] > anno_bb.shape[0]:
pred_bb = pred_bb[:anno_bb.shape[0], :]
else:
pad = torch.zeros((anno_bb.shape[0] - pred_bb.shape[0], 4)).type_as(pred_bb)
pred_bb = torch.cat((pred_bb, pad), dim=0)
pred_bb[0, :] = anno_bb[0, :]
if target_visible is not None:
target_visible = target_visible.bool()
valid = ((anno_bb[:, 2:] > 0.0).sum(1) == 2) & target_visible
else:
valid = ((anno_bb[:, 2:] > 0.0).sum(1) == 2)
err_center = calc_err_center(pred_bb, anno_bb)
err_center_normalized = calc_err_center(pred_bb, anno_bb, normalized=True)
err_overlap = calc_iou_overlap(pred_bb, anno_bb)
# handle invalid anno cases
if dataset in ['uav']:
err_center[~valid] = -1.0
else:
err_center[~valid] = float("Inf")
err_center_normalized[~valid] = -1.0
err_overlap[~valid] = -1.0
if dataset == 'lasot':
err_center_normalized[~target_visible] = float("Inf")
err_center[~target_visible] = float("Inf")
if torch.isnan(err_overlap).any():
raise Exception('Nans in calculated overlap')
return err_overlap, err_center, err_center_normalized, valid
def extract_results(trackers, dataset, report_name, skip_missing_seq=False, plot_bin_gap=0.05,
exclude_invalid_frames=False):
settings = env_settings()
eps = 1e-16
result_plot_path = os.path.join(settings.result_plot_path, report_name)
if not os.path.exists(result_plot_path):
os.makedirs(result_plot_path)
threshold_set_overlap = torch.arange(0.0, 1.0 + plot_bin_gap, plot_bin_gap, dtype=torch.float64)
threshold_set_center = torch.arange(0, 51, dtype=torch.float64)
threshold_set_center_norm = torch.arange(0, 51, dtype=torch.float64) / 100.0
avg_overlap_all = torch.zeros((len(dataset), len(trackers)), dtype=torch.float64)
ave_success_rate_plot_overlap = torch.zeros((len(dataset), len(trackers), threshold_set_overlap.numel()),
dtype=torch.float32)
ave_success_rate_plot_center = torch.zeros((len(dataset), len(trackers), threshold_set_center.numel()),
dtype=torch.float32)
ave_success_rate_plot_center_norm = torch.zeros((len(dataset), len(trackers), threshold_set_center.numel()),
dtype=torch.float32)
from collections import defaultdict
# default dict of default dict of list
valid_sequence = torch.ones(len(dataset), dtype=torch.uint8)
for seq_id, seq in enumerate(tqdm(dataset)):
frame_success_rate_plot_overlap = defaultdict(lambda: defaultdict(list))
frame_success_rate_plot_center = defaultdict(lambda: defaultdict(list))
frame_success_rate_plot_center_norm = defaultdict(lambda: defaultdict(list))
# Load anno
anno_bb = torch.tensor(seq.ground_truth_rect)
target_visible = torch.tensor(seq.target_visible, dtype=torch.uint8) if seq.target_visible is not None else None
for trk_id, trk in enumerate(trackers):
# Load results
base_results_path = '{}/{}'.format(trk.results_dir, seq.name)
results_path = '{}.txt'.format(base_results_path)
if os.path.isfile(results_path):
pred_bb = torch.tensor(load_text(str(results_path), delimiter=('\t', ','), dtype=np.float64))
else:
if skip_missing_seq:
valid_sequence[seq_id] = 0
break
else:
raise Exception('Result not found. {}'.format(results_path))
# Calculate measures
err_overlap, err_center, err_center_normalized, valid_frame = calc_seq_err_robust(
pred_bb, anno_bb, seq.dataset, target_visible)
avg_overlap_all[seq_id, trk_id] = err_overlap[valid_frame].mean()
if exclude_invalid_frames:
seq_length = valid_frame.long().sum()
else:
seq_length = anno_bb.shape[0]
if seq_length <= 0:
raise Exception('Seq length zero')
ave_success_rate_plot_overlap[seq_id, trk_id, :] = (err_overlap.view(-1, 1) > threshold_set_overlap.view(1, -1)).sum(0).float() / seq_length
ave_success_rate_plot_center[seq_id, trk_id, :] = (err_center.view(-1, 1) <= threshold_set_center.view(1, -1)).sum(0).float() / seq_length
ave_success_rate_plot_center_norm[seq_id, trk_id, :] = (err_center_normalized.view(-1, 1) <= threshold_set_center_norm.view(1, -1)).sum(0).float() / seq_length
# for frame_id in range(seq_length):
# frame_success_rate_plot_overlap[trk_id][frame_id].append((err_overlap[frame_id]).item())
# frame_success_rate_plot_center[trk_id][frame_id].append((err_center[frame_id]).item())
# frame_success_rate_plot_center_norm[trk_id][frame_id].append((err_center_normalized[frame_id] < 0.2).item())
# output_folder = "../cvpr2025/per_frame_success_rate"
# os.makedirs(output_folder, exist_ok=True)
# with open(osp.join(output_folder, f"{seq.name}.txt"), 'w') as f:
# for frame_id in range(seq_length):
# suc_score = frame_success_rate_plot_overlap[trk_id][frame_id][0]
# f.write(f"{suc_score}\n")
# # plot the average success rate, center normalized for each tracker
# # y axis: success rate
# # x axis: frame number
# # different color for each tracker
# # save the plot as a figure
# import matplotlib.pyplot as plt
# plt.figure(figsize=(10, 6))
# for trk_id, trk in enumerate(trackers):
# list_to_plot = [np.mean(frame_success_rate_plot_overlap[trk_id][frame_id]) for frame_id in range(2000)]
# # smooth the curve; window size = 10
# smooth_list_to_plot = np.convolve(list_to_plot, np.ones((10,))/10, mode='valid')
# # the smooth curve and non smooth curve have the same label
# plt.plot(smooth_list_to_plot, label=trk.display_name, alpha=1)
# plt.xlabel('Frame Number')
# plt.ylabel('Success Rate')
# plt.title('Average Success Rate Over Frames')
# plt.legend()
# plt.grid(True)
# plt.savefig('average_success_rate_plot_overlap.png')
# plt.close()
print('\n\nComputed results over {} / {} sequences'.format(valid_sequence.long().sum().item(), valid_sequence.shape[0]))
# Prepare dictionary for saving data
seq_names = [s.name for s in dataset]
tracker_names = [{'name': t.name, 'param': t.parameter_name, 'run_id': t.run_id, 'disp_name': t.display_name}
for t in trackers]
eval_data = {'sequences': seq_names, 'trackers': tracker_names,
'valid_sequence': valid_sequence.tolist(),
'ave_success_rate_plot_overlap': ave_success_rate_plot_overlap.tolist(),
'ave_success_rate_plot_center': ave_success_rate_plot_center.tolist(),
'ave_success_rate_plot_center_norm': ave_success_rate_plot_center_norm.tolist(),
'avg_overlap_all': avg_overlap_all.tolist(),
'threshold_set_overlap': threshold_set_overlap.tolist(),
'threshold_set_center': threshold_set_center.tolist(),
'threshold_set_center_norm': threshold_set_center_norm.tolist()}
with open(result_plot_path + '/eval_data.pkl', 'wb') as fh:
pickle.dump(eval_data, fh)
return eval_data