support dump results in 1.5 image demo
This commit is contained in:
@@ -6,19 +6,38 @@ from dds_cloudapi_sdk import TextPrompt
|
|||||||
from dds_cloudapi_sdk import DetectionModel
|
from dds_cloudapi_sdk import DetectionModel
|
||||||
from dds_cloudapi_sdk import DetectionTarget
|
from dds_cloudapi_sdk import DetectionTarget
|
||||||
|
|
||||||
|
import os
|
||||||
import cv2
|
import cv2
|
||||||
|
import json
|
||||||
import torch
|
import torch
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import supervision as sv
|
import supervision as sv
|
||||||
|
import pycocotools.mask as mask_util
|
||||||
|
from pathlib import Path
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from sam2.build_sam import build_sam2
|
from sam2.build_sam import build_sam2
|
||||||
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
||||||
|
|
||||||
|
"""
|
||||||
|
Hyper parameters
|
||||||
|
"""
|
||||||
|
API_TOKEN = "Your API token"
|
||||||
|
TEXT_PROMPT = "car"
|
||||||
|
IMG_PATH = "notebooks/images/cars.jpg"
|
||||||
|
SAM2_CHECKPOINT = "./checkpoints/sam2_hiera_large.pt"
|
||||||
|
SAM2_MODEL_CONFIG = "sam2_hiera_l.yaml"
|
||||||
|
GROUNDING_MODEL = DetectionModel.GDino1_5_Pro # DetectionModel.GDino1_6_Pro
|
||||||
|
OUTPUT_DIR = Path("outputs/grounded_sam2_gd1.5_demo")
|
||||||
|
DUMP_JSON_RESULTS = True
|
||||||
|
|
||||||
|
# create output directory
|
||||||
|
OUTPUT_DIR.mkdir(parents=True, exist_ok=True)
|
||||||
|
|
||||||
"""
|
"""
|
||||||
Prompt Grounding DINO 1.5 with Text for Box Prompt Generation with Cloud API
|
Prompt Grounding DINO 1.5 with Text for Box Prompt Generation with Cloud API
|
||||||
"""
|
"""
|
||||||
# Step 1: initialize the config
|
# Step 1: initialize the config
|
||||||
token = "Your API token"
|
token = API_TOKEN
|
||||||
config = Config(token)
|
config = Config(token)
|
||||||
|
|
||||||
# Step 2: initialize the client
|
# Step 2: initialize the client
|
||||||
@@ -27,14 +46,14 @@ client = Client(config)
|
|||||||
# Step 3: run the task by DetectionTask class
|
# Step 3: run the task by DetectionTask class
|
||||||
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
|
# image_url = "https://algosplt.oss-cn-shenzhen.aliyuncs.com/test_files/tasks/detection/iron_man.jpg"
|
||||||
# if you are processing local image file, upload them to DDS server to get the image url
|
# if you are processing local image file, upload them to DDS server to get the image url
|
||||||
img_path = "notebooks/images/cars.jpg"
|
img_path = IMG_PATH
|
||||||
image_url = client.upload_file(img_path)
|
image_url = client.upload_file(img_path)
|
||||||
|
|
||||||
task = DetectionTask(
|
task = DetectionTask(
|
||||||
image_url=image_url,
|
image_url=image_url,
|
||||||
prompts=[TextPrompt(text="car")],
|
prompts=[TextPrompt(text=TEXT_PROMPT)],
|
||||||
targets=[DetectionTarget.BBox], # detect bbox
|
targets=[DetectionTarget.BBox], # detect bbox
|
||||||
model=DetectionModel.GDino1_5_Pro, # detect with GroundingDino-1.5-Pro model
|
model=GROUNDING_MODEL, # detect with GroundingDino-1.5-Pro model
|
||||||
)
|
)
|
||||||
|
|
||||||
client.run_task(task)
|
client.run_task(task)
|
||||||
@@ -68,8 +87,8 @@ if torch.cuda.get_device_properties(0).major >= 8:
|
|||||||
torch.backends.cudnn.allow_tf32 = True
|
torch.backends.cudnn.allow_tf32 = True
|
||||||
|
|
||||||
# build SAM2 image predictor
|
# build SAM2 image predictor
|
||||||
sam2_checkpoint = "./checkpoints/sam2_hiera_large.pt"
|
sam2_checkpoint = SAM2_CHECKPOINT
|
||||||
model_cfg = "sam2_hiera_l.yaml"
|
model_cfg = SAM2_MODEL_CONFIG
|
||||||
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cuda")
|
||||||
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
||||||
|
|
||||||
@@ -120,8 +139,43 @@ annotated_frame = box_annotator.annotate(scene=img.copy(), detections=detections
|
|||||||
|
|
||||||
label_annotator = sv.LabelAnnotator()
|
label_annotator = sv.LabelAnnotator()
|
||||||
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
|
||||||
cv2.imwrite("groundingdino_annotated_image.jpg", annotated_frame)
|
cv2.imwrite(os.path.join(OUTPUT_DIR, "groundingdino_annotated_image.jpg"), annotated_frame)
|
||||||
|
|
||||||
mask_annotator = sv.MaskAnnotator()
|
mask_annotator = sv.MaskAnnotator()
|
||||||
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
|
||||||
cv2.imwrite("grounded_sam2_annotated_image_with_mask.jpg", annotated_frame)
|
cv2.imwrite(os.path.join(OUTPUT_DIR, "grounded_sam2_annotated_image_with_mask.jpg"), annotated_frame)
|
||||||
|
|
||||||
|
"""
|
||||||
|
Dump the results in standard format and save as json files
|
||||||
|
"""
|
||||||
|
|
||||||
|
def single_mask_to_rle(mask):
|
||||||
|
rle = mask_util.encode(np.array(mask[:, :, None], order="F", dtype="uint8"))[0]
|
||||||
|
rle["counts"] = rle["counts"].decode("utf-8")
|
||||||
|
return rle
|
||||||
|
|
||||||
|
if DUMP_JSON_RESULTS:
|
||||||
|
# convert mask into rle format
|
||||||
|
mask_rles = [single_mask_to_rle(mask) for mask in masks]
|
||||||
|
|
||||||
|
input_boxes = input_boxes.tolist()
|
||||||
|
scores = scores.tolist()
|
||||||
|
# save the results in standard format
|
||||||
|
results = {
|
||||||
|
"image_path": img_path,
|
||||||
|
"annotations" : [
|
||||||
|
{
|
||||||
|
"class_name": class_name,
|
||||||
|
"bbox": box,
|
||||||
|
"segmentation": mask_rle,
|
||||||
|
"score": score,
|
||||||
|
}
|
||||||
|
for class_name, box, mask_rle, score in zip(class_names, input_boxes, mask_rles, scores)
|
||||||
|
],
|
||||||
|
"box_format": "xyxy",
|
||||||
|
"img_width": image.width,
|
||||||
|
"img_height": image.height,
|
||||||
|
}
|
||||||
|
|
||||||
|
with open(os.path.join(OUTPUT_DIR, "grounded_sam2_gd1.5_image_demo_results.json"), "w") as f:
|
||||||
|
json.dump(results, f, indent=4)
|
||||||
|
Reference in New Issue
Block a user