Files
IDcardsGenerator/main.py
Nguyễn Phước Thành f63589a10a combine augment
2025-08-06 21:44:39 +07:00

423 lines
15 KiB
Python

"""
Main script for data augmentation
"""
import argparse
import sys
from pathlib import Path
from typing import Dict, Any
# Add src to path for imports
sys.path.append(str(Path(__file__).parent / "src"))
from src.config_manager import ConfigManager
from src.data_augmentation import DataAugmentation
from src.image_processor import ImageProcessor
from src.id_card_detector import IDCardDetector
from src.utils import setup_logging, get_image_files, print_progress
def parse_arguments():
"""Parse command line arguments"""
parser = argparse.ArgumentParser(description="Image Data Augmentation Tool")
parser.add_argument(
"--config",
type=str,
default="config/config.yaml",
help="Path to configuration file"
)
parser.add_argument(
"--preset",
type=str,
help="Apply augmentation preset (light, medium, heavy, ocr_optimized, document)"
)
parser.add_argument(
"--input-dir",
type=str,
help="Input directory containing images (overrides config)"
)
parser.add_argument(
"--output-dir",
type=str,
help="Output directory for augmented images (overrides config)"
)
parser.add_argument(
"--num-augmentations",
type=int,
help="Number of augmented versions per image (overrides config)"
)
parser.add_argument(
"--target-size",
type=str,
help="Target size for images (width x height) (overrides config)"
)
parser.add_argument(
"--preview",
action="store_true",
help="Preview augmentation on first image only"
)
parser.add_argument(
"--info",
action="store_true",
help="Show information about images in input directory"
)
parser.add_argument(
"--list-presets",
action="store_true",
help="List available presets and exit"
)
parser.add_argument(
"--log-level",
type=str,
default="INFO",
choices=["DEBUG", "INFO", "WARNING", "ERROR"],
help="Logging level"
)
# ID Card Detection arguments
parser.add_argument(
"--enable-id-detection",
action="store_true",
help="Enable ID card detection and cropping before augmentation"
)
parser.add_argument(
"--model-path",
type=str,
help="Path to YOLO model for ID card detection (overrides config)"
)
parser.add_argument(
"--confidence",
type=float,
help="Confidence threshold for ID card detection (overrides config)"
)
parser.add_argument(
"--crop-mode",
type=str,
choices=["bbox", "square", "aspect_ratio"],
help="Crop mode for ID cards (overrides config)"
)
parser.add_argument(
"--crop-target-size",
type=str,
help="Target size for cropped ID cards (widthxheight) (overrides config)"
)
return parser.parse_args()
def parse_range(range_str: str) -> tuple:
"""Parse range string like '0.8-1.2' to tuple (0.8, 1.2)"""
try:
min_val, max_val = map(float, range_str.split('-'))
return (min_val, max_val)
except ValueError:
print(f"Invalid range format: {range_str}. Expected format: min-max")
sys.exit(1)
def parse_size(size_str: str) -> tuple:
"""Parse size string like '224x224' to tuple (224, 224)"""
try:
width, height = map(int, size_str.split('x'))
return (width, height)
except ValueError:
print(f"Invalid size format: {size_str}. Expected format: widthxheight")
sys.exit(1)
def show_image_info(input_dir: Path):
"""Show information about images in input directory"""
image_files = get_image_files(input_dir)
if not image_files:
print(f"No images found in {input_dir}")
return
print(f"\nFound {len(image_files)} images in {input_dir}")
print("\nImage Information:")
print("-" * 80)
processor = ImageProcessor()
total_size = 0
for i, image_path in enumerate(image_files[:10]): # Show first 10 images
info = processor.get_image_info(image_path)
if info:
print(f"{i+1:2d}. {image_path.name}")
print(f" Size: {info['width']}x{info['height']} pixels")
print(f" Channels: {info['channels']}")
print(f" File size: {info['file_size_mb']} MB")
print(f" Format: {info['format']}")
total_size += info['file_size_mb']
if len(image_files) > 10:
print(f"\n... and {len(image_files) - 10} more images")
print(f"\nTotal file size: {total_size:.2f} MB")
print(f"Average file size: {total_size/len(image_files):.2f} MB")
def preview_augmentation(input_dir: Path, output_dir: Path, config: Dict[str, Any],
id_detection_config: Dict[str, Any] = None):
"""Preview augmentation on first image"""
image_files = get_image_files(input_dir)
if not image_files:
print(f"No images found in {input_dir}")
return
print(f"\nPreviewing augmentation on: {image_files[0].name}")
# Create augmentation instance
augmenter = DataAugmentation(config)
# Process with ID detection if enabled
if id_detection_config and id_detection_config.get('enabled', False):
print("🔍 ID Card Detection enabled - processing with YOLO model...")
# Initialize ID card detector
detector = IDCardDetector(
model_path=id_detection_config.get('model_path'),
config=config
)
if not detector.model:
print("❌ Failed to load YOLO model, proceeding with normal augmentation")
else:
# Process single image with ID detection
result = detector.process_single_image(
image_path=image_files[0],
output_dir=output_dir,
apply_augmentation=True,
save_original=id_detection_config.get('save_original_crops', True),
confidence=id_detection_config.get('confidence_threshold', 0.25),
iou_threshold=id_detection_config.get('iou_threshold', 0.45),
crop_mode=id_detection_config.get('crop_mode', 'bbox'),
target_size=id_detection_config.get('target_size'),
padding=id_detection_config.get('padding', 10)
)
if result and result.get('detections'):
print(f"✅ Detected {len(result['detections'])} ID cards")
print(f"💾 Saved {len(result['processed_cards'])} processed cards")
return
else:
print("⚠️ No ID cards detected, proceeding with normal augmentation")
# Normal augmentation (fallback) with new logic
augmented_paths = augmenter.augment_image_file(
image_files[0],
output_dir,
num_target_images=3
)
if augmented_paths:
print(f"Created {len(augmented_paths)} augmented versions:")
for i, path in enumerate(augmented_paths, 1):
print(f" {i}. {path.name}")
else:
print("Failed to create augmented images")
def main():
"""Main function"""
args = parse_arguments()
# Initialize config manager
config_manager = ConfigManager(args.config)
# List presets if requested
if args.list_presets:
presets = config_manager.list_presets()
print("\nAvailable presets:")
for preset in presets:
print(f" - {preset}")
return
# Apply preset if specified
if args.preset:
if not config_manager.apply_preset(args.preset):
sys.exit(1)
# Override config with command line arguments
if args.input_dir:
config_manager.update_config({"paths": {"input_dir": args.input_dir}})
if args.output_dir:
config_manager.update_config({"paths": {"output_dir": args.output_dir}})
if args.num_augmentations:
config_manager.update_config({"processing": {"num_augmentations": args.num_augmentations}})
if args.target_size:
target_size = parse_size(args.target_size)
config_manager.update_config({"processing": {"target_size": list(target_size)}})
# Get configuration
config = config_manager.get_config()
paths_config = config_manager.get_paths_config()
processing_config = config_manager.get_processing_config()
augmentation_config = config_manager.get_augmentation_config()
logging_config = config_manager.get_logging_config()
data_strategy_config = config.get("data_strategy", {})
# Setup logging
logger = setup_logging(logging_config.get("level", "INFO"))
logger.info("Starting data augmentation process")
# Parse paths
input_dir = Path(paths_config.get("input_dir", "data/dataset/training_data/images"))
output_dir = Path(paths_config.get("output_dir", "data/augmented_data"))
# Check if input directory exists
if not input_dir.exists():
logger.error(f"Input directory does not exist: {input_dir}")
sys.exit(1)
# Create output directory
output_dir.mkdir(parents=True, exist_ok=True)
# Show image information if requested
if args.info:
show_image_info(input_dir)
return
# Get ID detection config
id_detection_config = config.get('id_card_detection', {})
# Override ID detection config with command line arguments
if args.enable_id_detection:
id_detection_config['enabled'] = True
if args.model_path:
id_detection_config['model_path'] = args.model_path
if args.confidence:
id_detection_config['confidence_threshold'] = args.confidence
if args.crop_mode:
id_detection_config['crop_mode'] = args.crop_mode
if args.crop_target_size:
target_size = parse_size(args.crop_target_size)
id_detection_config['target_size'] = list(target_size)
# Preview augmentation if requested
if args.preview:
preview_augmentation(input_dir, output_dir, augmentation_config, id_detection_config)
return
# Get image files
image_files = get_image_files(input_dir)
if not image_files:
logger.error(f"No images found in {input_dir}")
sys.exit(1)
# Get data strategy parameters
multiplication_factor = data_strategy_config.get("multiplication_factor", 3.0)
random_seed = data_strategy_config.get("random_seed")
logger.info(f"Found {len(image_files)} images to process")
logger.info(f"Output directory: {output_dir}")
logger.info(f"Data strategy: multiplication_factor = {multiplication_factor}")
if multiplication_factor < 1.0:
logger.info(f"SAMPLING MODE: Will process {multiplication_factor*100:.1f}% of input images")
else:
logger.info(f"MULTIPLICATION MODE: Target {multiplication_factor}x dataset size")
logger.info(f"Target size: {processing_config.get('target_size', [224, 224])}")
if random_seed:
logger.info(f"Random seed: {random_seed}")
# Process with ID detection if enabled
if id_detection_config.get('enabled', False):
logger.info("ID Card Detection enabled - processing with YOLO model...")
# Initialize ID card detector
detector = IDCardDetector(
model_path=id_detection_config.get('model_path'),
config=config
)
if not detector.model:
logger.error("Failed to load YOLO model")
sys.exit(1)
logger.info(f"YOLO model loaded: {detector.model_path}")
logger.info(f"Confidence threshold: {id_detection_config.get('confidence_threshold', 0.25)}")
logger.info(f"Crop mode: {id_detection_config.get('crop_mode', 'bbox')}")
# Bước 1: Detect và crop ID cards vào thư mục processed
processed_dir = output_dir / "processed"
processed_dir.mkdir(parents=True, exist_ok=True)
logger.info("Step 1: Detect and crop ID cards...")
detector.batch_process(
input_dir=input_dir,
output_dir=processed_dir,
confidence=id_detection_config.get('confidence_threshold', 0.25),
iou_threshold=id_detection_config.get('iou_threshold', 0.45),
crop_mode=id_detection_config.get('crop_mode', 'bbox'),
target_size=id_detection_config.get('target_size'),
padding=id_detection_config.get('padding', 10)
)
# Bước 2: Augment các card đã crop với strategy mới
logger.info("Step 2: Augment cropped ID cards with smart strategy...")
augmenter = DataAugmentation(augmentation_config)
# Truyền full config để augmenter có thể access data_strategy
augmenter.config.update({"data_strategy": data_strategy_config})
augment_results = augmenter.batch_augment(
processed_dir,
output_dir,
multiplication_factor=multiplication_factor,
random_seed=random_seed
)
# Log results
if augment_results:
logger.info(f"Augmentation Summary:")
logger.info(f" Input images: {augment_results.get('input_images', 0)}")
logger.info(f" Selected for processing: {augment_results.get('selected_images', 0)}")
logger.info(f" Target total: {augment_results.get('target_total', 0)}")
logger.info(f" Actually generated: {augment_results.get('actual_generated', 0)}")
logger.info(f" Efficiency: {augment_results.get('efficiency', 0):.1%}")
else:
# Augment trực tiếp ảnh gốc với strategy mới
logger.info("Starting smart batch augmentation (direct augmentation)...")
augmenter = DataAugmentation(augmentation_config)
# Truyền full config để augmenter có thể access data_strategy
augmenter.config.update({"data_strategy": data_strategy_config})
augment_results = augmenter.batch_augment(
input_dir,
output_dir,
multiplication_factor=multiplication_factor,
random_seed=random_seed
)
# Log results
if augment_results:
logger.info(f"Augmentation Summary:")
logger.info(f" Input images: {augment_results.get('input_images', 0)}")
logger.info(f" Selected for processing: {augment_results.get('selected_images', 0)}")
logger.info(f" Target total: {augment_results.get('target_total', 0)}")
logger.info(f" Actually generated: {augment_results.get('actual_generated', 0)}")
logger.info(f" Efficiency: {augment_results.get('efficiency', 0):.1%}")
logger.info("Data processing completed successfully")
if __name__ == "__main__":
main()