import os import cv2 from typing import Optional from pathlib import Path import supervision as sv import uvicorn import yaml from fastapi import FastAPI, File, Form, HTTPException, Request, UploadFile from fastapi.middleware.cors import CORSMiddleware from fastapi.responses import JSONResponse from fastapi.security.api_key import APIKeyHeader from starlette.status import HTTP_403_FORBIDDEN from groundingdino.util.inference import Model, preprocess_caption from pdf_converter import PdfConverter API_PARTNER_KEY = "" API_KEY_NAME = "x-api-key" api_key_header = APIKeyHeader(name=API_KEY_NAME, auto_error=False) app = FastAPI() app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) pdf_converter: PdfConverter = PdfConverter() grounding_model = Model( model_config_path=os.environ.get("GROUNDING_DINO_CONFIG"), model_checkpoint_path=os.environ.get("GROUNDING_DINO_CHECKPOINT"), device="cuda:0", ) BOX_THRESHOLD = 0.4 TEXT_THRESHOLD = 0.25 async def verify_api_key(request: Request): api_key = await api_key_header(request) if API_PARTNER_KEY is None or api_key != API_PARTNER_KEY: raise HTTPException( status_code=HTTP_403_FORBIDDEN, detail="Could not validate API KEY", ) @app.middleware("http") async def api_key_middleware(request: Request, call_next): # Allow docs and openapi without API key if request.url.path in ["/docs", "/openapi.json", "/redoc"]: return await call_next(request) try: await verify_api_key(request) except HTTPException as exc: return JSONResponse(status_code=exc.status_code, content={"detail": exc.detail}) return await call_next(request) @app.post("/crop_ooi") async def crop_object_of_interest( document_file: Optional[UploadFile] = File( None, description="The document to process." ), concept_list: Optional[list[str]] = Form( ["ID document"], description="List of concepts to detect e.g. dog, cat, rain" ), save_files: Optional[bool] = Form( False, description="True if crop are saved on local" ), box_threshold: Optional[float] = Form( 0.4, description="Threshold rate to keep confidence detections" ), text_threshold: Optional[float] = Form(0.25, description="Text threshold"), ): content = await document_file.read() if document_file.content_type not in ["application/pdf", "image/jpeg", "image/png"]: raise HTTPException( status_code=400, detail=f"Unsupported file type ({document_file.content_type}).", ) try: images = pdf_converter.convert_pdf_bytes_to_jpg(content) text = "".join([f"{x}. " for x in concept_list]) caption = preprocess_caption(text) for image in images: detections, labels = grounding_model.predict_with_caption( image=images, caption=caption, box_threshold=box_threshold, text_threshold=text_threshold, ) confidences = detections.confidence.tolist() class_names = labels labels = [ f"{class_name} {confidence:.2f}" for class_name, confidence in zip(class_names, confidences) ] for i, bbox in enumerate(detections.xyxy): x_min, y_min, x_max, y_max = tuple(bbox) patch = image[int(y_min) : int(y_max), int(x_min) : int(x_max)] # patch_img_path = str( # Path("outputs") / "extract" / f"{img_path.stem}_{i:d}.png" # ) # cv2.imwrite(patch_img_path, patch) box_annotator = sv.BoxAnnotator(color_lookup=sv.ColorLookup.INDEX) annotated_frame = box_annotator.annotate( scene=image.copy(), detections=detections ) label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX) annotated_frame = label_annotator.annotate( scene=annotated_frame, detections=detections, labels=labels ) # cv2.imwrite(str(Path("outputs") / f"{img_path.stem}.png"), annotated_frame) except Exception as e: print(f"{e}") if __name__ == "__main__": APP_PORT = int(os.environ.get("VLM_APP_PORT", 8009)) APP_HOST = os.environ.get("VLM_APP_HOST", "0.0.0.0") uvicorn.run(app, host=APP_HOST, port=APP_PORT)