Files
MultimodalOCR/OCRBench/scripts/mPLUG-DocOwl15.py
2024-12-30 19:30:31 +08:00

330 lines
11 KiB
Python

import json
import multiprocessing
import os
from argparse import ArgumentParser
from multiprocessing import Manager, Pool, Queue
import torch
from mplug_docowl.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from mplug_docowl.conversation import conv_templates
from mplug_docowl.mm_utils import (
KeywordsStoppingCriteria,
get_model_name_from_path,
process_images,
tokenizer_image_token,
)
from mplug_docowl.model.builder import load_pretrained_model
from mplug_docowl.processor import DocProcessor
from tqdm import tqdm
from transformers import TextStreamer
# https://github.com/X-PLUG/mPLUG-DocOwl/blob/main/DocOwl1.5/docowl_infer.py
def split_list(lst, n):
length = len(lst)
avg = length // n # 每份的大小
result = [] # 存储分割后的子列表
for i in range(n - 1):
result.append(lst[i * avg : (i + 1) * avg])
result.append(lst[(n - 1) * avg :])
return result
def save_json(json_list, save_path):
with open(save_path, "w", encoding="utf-8") as file:
json.dump(json_list, file, indent=4)
def _get_args():
parser = ArgumentParser()
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
parser.add_argument("--output_folder", type=str, default="./results")
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
parser.add_argument("--model_path", type=str, default="mPLUG/DocOwl1.5")
parser.add_argument("--save_name", type=str, default="mplug-DocOwl1.5")
parser.add_argument("--conv_mode", type=str, default="mplug_owl2")
parser.add_argument("--num_workers", type=int, default=8)
parser.add_argument("--temperature", type=float, default=0.0)
args = parser.parse_args()
return args
OCRBench_score = {
"Regular Text Recognition": 0,
"Irregular Text Recognition": 0,
"Artistic Text Recognition": 0,
"Handwriting Recognition": 0,
"Digit String Recognition": 0,
"Non-Semantic Text Recognition": 0,
"Scene Text-centric VQA": 0,
"Doc-oriented VQA": 0,
"Key Information Extraction": 0,
"Handwritten Mathematical Expression Recognition": 0,
}
AllDataset_score = {
"IIIT5K": 0,
"svt": 0,
"IC13_857": 0,
"IC15_1811": 0,
"svtp": 0,
"ct80": 0,
"cocotext": 0,
"ctw": 0,
"totaltext": 0,
"HOST": 0,
"WOST": 0,
"WordArt": 0,
"IAM": 0,
"ReCTS": 0,
"ORAND": 0,
"NonSemanticText": 0,
"SemanticText": 0,
"STVQA": 0,
"textVQA": 0,
"ocrVQA": 0,
"ESTVQA": 0,
"ESTVQA_cn": 0,
"docVQA": 0,
"infographicVQA": 0,
"ChartQA": 0,
"ChartQA_Human": 0,
"FUNSD": 0,
"SROIE": 0,
"POIE": 0,
"HME100k": 0,
}
num_all = {
"IIIT5K": 0,
"svt": 0,
"IC13_857": 0,
"IC15_1811": 0,
"svtp": 0,
"ct80": 0,
"cocotext": 0,
"ctw": 0,
"totaltext": 0,
"HOST": 0,
"WOST": 0,
"WordArt": 0,
"IAM": 0,
"ReCTS": 0,
"ORAND": 0,
"NonSemanticText": 0,
"SemanticText": 0,
"STVQA": 0,
"textVQA": 0,
"ocrVQA": 0,
"ESTVQA": 0,
"ESTVQA_cn": 0,
"docVQA": 0,
"infographicVQA": 0,
"ChartQA": 0,
"ChartQA_Human": 0,
"FUNSD": 0,
"SROIE": 0,
"POIE": 0,
"HME100k": 0,
}
def eval_worker(args, data, eval_id, output_queue):
print(f"Process {eval_id} start.")
model_name = get_model_name_from_path(args.model_path)
tokenizer, model, _, _ = load_pretrained_model(
args.model_path,
None,
model_name,
load_8bit=False,
load_4bit=False,
device=f"cuda:{eval_id}",
)
doc_image_processor = DocProcessor(
image_size=448,
anchors="grid_9",
add_global_img=True,
add_textual_crop_indicator=True,
)
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
for i in tqdm(range(len(data))):
img_path = os.path.join(args.image_folder, data[i]["image_path"])
qs = data[i]["question"]
if data[i].get("predict", 0) != 0:
print(f"{img_path} predict exist, continue.")
continue
image_tensor, patch_positions, text = doc_image_processor(
images=img_path, query="<|image|>" + qs
)
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
patch_positions = patch_positions.to(model.device)
conv = conv_templates["mplug_owl2"].copy()
conv.append_message(conv.roles[0], text)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = (
tokenizer_image_token(
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
)
.unsqueeze(0)
.to(model.device)
)
stop_str = conv.sep2
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensor,
patch_positions=patch_positions,
do_sample=False,
temperature=1.0,
max_new_tokens=512,
streamer=streamer,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1] :]).strip()
data[i]["predict"] = outputs
output_queue.put({eval_id: data})
print(f"Process {eval_id} has completed.")
if __name__ == "__main__":
multiprocessing.set_start_method("spawn")
args = _get_args()
if os.path.exists(os.path.join(args.output_folder, f"{args.save_name}.json")):
data_path = os.path.join(args.output_folder, f"{args.save_name}.json")
print(
f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}."
)
else:
data_path = args.OCRBench_file
with open(data_path, "r", encoding="utf-8") as f:
data = json.load(f)
data_list = split_list(data, args.num_workers)
output_queue = Manager().Queue()
pool = Pool(processes=args.num_workers)
for i in range(len(data_list)):
# pool.apply(eval_worker, args=(args, data_list[i], i, output_queue))
pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue))
pool.close()
pool.join()
results = {}
while not output_queue.empty():
result = output_queue.get()
results.update(result)
data = []
for i in range(len(data_list)):
data.extend(results[i])
for i in range(len(data)):
data_type = data[i]["type"]
dataset_name = data[i]["dataset_name"]
answers = data[i]["answers"]
if data[i].get("predict", 0) == 0:
continue
predict = data[i]["predict"]
data[i]["result"] = 0
if dataset_name == "HME100k":
if type(answers) == list:
for j in range(len(answers)):
answer = answers[j].strip().replace("\n", " ").replace(" ", "")
predict = predict.strip().replace("\n", " ").replace(" ", "")
if answer in predict:
data[i]["result"] = 1
else:
answers = answers.strip().replace("\n", " ").replace(" ", "")
predict = predict.strip().replace("\n", " ").replace(" ", "")
if answers in predict:
data[i]["result"] = 1
else:
if type(answers) == list:
for j in range(len(answers)):
answer = answers[j].lower().strip().replace("\n", " ")
predict = predict.lower().strip().replace("\n", " ")
if answer in predict:
data[i]["result"] = 1
else:
answers = answers.lower().strip().replace("\n", " ")
predict = predict.lower().strip().replace("\n", " ")
if answers in predict:
data[i]["result"] = 1
save_json(data, os.path.join(args.output_folder, f"{args.save_name}.json"))
if len(data) == 1000:
for i in range(len(data)):
if data[i].get("result", 100) == 100:
continue
OCRBench_score[data[i]["type"]] += data[i]["result"]
recognition_score = (
OCRBench_score["Regular Text Recognition"]
+ OCRBench_score["Irregular Text Recognition"]
+ OCRBench_score["Artistic Text Recognition"]
+ OCRBench_score["Handwriting Recognition"]
+ OCRBench_score["Digit String Recognition"]
+ OCRBench_score["Non-Semantic Text Recognition"]
)
Final_score = (
recognition_score
+ OCRBench_score["Scene Text-centric VQA"]
+ OCRBench_score["Doc-oriented VQA"]
+ OCRBench_score["Key Information Extraction"]
+ OCRBench_score["Handwritten Mathematical Expression Recognition"]
)
print("###########################OCRBench##############################")
print(f"Text Recognition(Total 300):{recognition_score}")
print("------------------Details of Recognition Score-------------------")
print(
f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}"
)
print(
f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}"
)
print(
f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}"
)
print(
f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}"
)
print(
f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}"
)
print(
f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}"
)
print("----------------------------------------------------------------")
print(
f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}"
)
print("----------------------------------------------------------------")
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
print("----------------------------------------------------------------")
print(
f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}"
)
print("----------------------------------------------------------------")
print(
f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}"
)
print("----------------------Final Score-------------------------------")
print(f"Final Score(Total 1000): {Final_score}")
else:
for i in range(len(data)):
num_all[data[i]["dataset_name"]] += 1
if data[i].get("result", 100) == 100:
continue
AllDataset_score[data[i]["dataset_name"]] += data[i]["result"]
for key in AllDataset_score.keys():
print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")