Files
MultimodalOCR/models/mPLUG_Owl/mplug_owl/processing_mplug_owl.py
lz 3213a65d96 add readme (#10)
* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* remove submodule

* add mPLUG MiniGPT4

* Update Readme.md

* Update Readme.md

* Update Readme.md

---------

Co-authored-by: Yuliang Liu <34134635+Yuliang-Liu@users.noreply.github.com>
2023-06-01 09:57:03 +08:00

209 lines
8.6 KiB
Python

import re
import torch
import torch.utils.checkpoint
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import BatchEncoding
from transformers.models.clip.image_processing_clip import CLIPImageProcessor
media_token = ({"image": ("<image>", 65)},)
class MplugOwlProcessor(ProcessorMixin):
attributes = []
tokenizer_class = ("MplugOwlTokenizer")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
super().__init__(**kwargs)
self.tokens_to_generate = 0
self.image_processor = image_processor
self.tokenizer = tokenizer
self.add_BOS = True
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = tokenize_prompts(
prompts=text,
tokens_to_generate=self.tokens_to_generate,
add_BOS=self.add_BOS,
tokenizer=self.tokenizer,
ignore_dist=True,
**kwargs,
)
# encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return BatchEncoding(data=encoding)
elif text is not None:
return BatchEncoding(data=encoding)
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, skip_special_tokens=True, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
def decode(self, skip_special_tokens=True, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
class MplugOwlImageProcessor(CLIPImageProcessor):
pass
def detokenize_generations(tokens_gpu_tensor, lengths_gpu_tensor, return_segments, tokenizer):
"""Detokenize the generated tokens."""
prompts_plus_generations = []
if return_segments:
prompts_plus_generations_segments = []
tokens = tokens_gpu_tensor.cpu().numpy().tolist()
lengths = lengths_gpu_tensor.cpu().numpy().tolist()
for sequence_tokens, length in zip(tokens, lengths):
sequence_tokens = sequence_tokens[:length]
prompts_plus_generations.append(tokenizer.detokenize(sequence_tokens))
if return_segments:
from tokenizers.decoders import Metaspace
if hasattr(tokenizer, "tokenizer"):
if isinstance(tokenizer.tokenizer.decoder, Metaspace):
words = tokenizer.tokenizer.decode(sequence_tokens)
else:
words = []
for token in sequence_tokens:
word = tokenizer.tokenizer.decoder[token]
word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
"utf-8", errors="replace"
)
words.append(word)
prompts_plus_generations_segments.append(words)
else:
words = tokenizer.detokenize(sequence_tokens)
# else:
# words = []
# for token in sequence_tokens:
# word = tokenizer.tokenizer.decoder[token]
# word = bytearray(
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
# 'utf-8', errors='replace')
# words.append(word)
prompts_plus_generations_segments.append(words)
if return_segments:
return tokens, prompts_plus_generations, prompts_plus_generations_segments
return tokens, prompts_plus_generations
def tokenize_prompts(
prompts=None, tokens_to_generate=None, add_BOS=None, rank=0, tokenizer=None, ignore_dist=False, **kwargs
):
"""Tokenize prompts and make them avaiable on all ranks."""
# On all ranks set to None so we can pass them to functions
prompts_tokens_cuda_long_tensor = None
prompts_length_cuda_long_tensor = None
# On the specified rank, build the above.
attention_mask = None
if ignore_dist or torch.distributed.get_rank() == rank:
assert prompts is not None
assert tokens_to_generate is not None
# Tensor of tokens padded and their unpadded length.
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = _tokenize_prompts_and_batch(
prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs
)
return {
"input_ids": prompts_tokens_cuda_long_tensor,
"attention_mask": attention_mask,
# "prompt_length": prompts_length_cuda_long_tensor,
}
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs):
"""Given a set of prompts and number of tokens to generate:
- tokenize prompts
- set the sequence length to be the max of length of prompts plus the number of tokens we would like to generate
- pad all the sequences to this length so we can convert them into a 2D tensor.
"""
# Tokenize all the prompts.
# if add_BOS:
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt)
# for prompt in prompts]
# else:
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
prompts_tokens = [_tokenize_prompt(prompt, tokenizer, add_BOS, **kwargs) for prompt in prompts]
# Now we have a list of list of tokens which each list has a different
# size. We want to extend this list to:
# - incorporate the tokens that need to be generated
# - make all the sequences equal length.
# Get the prompts length.
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
# Get the max prompts length.
max_prompt_len = max(prompts_length)
# Number of tokens in the each sample of the batch.
samples_length = max_prompt_len + tokens_to_generate
# Now update the list of list to be of the same size: samples_length.
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
padding_size = samples_length - prompt_length
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size)
# Now we are in a structured format, we can convert to tensors.
prompts_tokens_tensor = torch.LongTensor(prompts_tokens)
prompts_length_tensor = torch.LongTensor(prompts_length)
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2])
for i, l in enumerate(prompts_length_tensor):
attention_mask[i, :l] = 1
return prompts_tokens_tensor, prompts_length_tensor, attention_mask
def _tokenize_prompt(prompt, tokenizer, add_BOS=False, media_info={"<image>": 65}, **kwargs):
media_tokens = {k: -int(i + 1) for i, k in enumerate(media_info.keys())}
media_lengths = media_info.copy()
if add_BOS:
prompt_chunk = [tokenizer.bos_token_id]
else:
prompt_chunk = []
# Pure Text
if all([media_token not in prompt for media_token in media_tokens.keys()]):
enc_chunk = prompt_chunk + tokenizer(prompt, add_special_tokens=False, **kwargs)["input_ids"]
# Multi-Modal Text
else:
enc_chunk = prompt_chunk
pattern = "|".join(map(re.escape, list(media_tokens.keys())))
chunk_strs = re.split(f"({pattern})", prompt)
chunk_strs = [x for x in chunk_strs if len(x) > 0]
for idx, chunk_str in enumerate(chunk_strs):
if chunk_str in media_tokens:
enc_chunk += [media_tokens[chunk_str]] * media_lengths[chunk_str]
else:
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)["input_ids"]
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos
# tmp_chunk += [tokenizer.eod_id]
enc_chunk += tmp_chunk
return enc_chunk