Files
MultimodalOCR/eval_textvqa.py
2023-05-12 16:54:54 +08:00

47 lines
2.1 KiB
Python

from PIL import Image
import requests
from transformers import Blip2Processor, Blip2ForConditionalGeneration
import torch
import os
import argparse
import json
#dataset_name=['ct80','IC13_857','IC15_1811','IIIT5K','svt','svtp']
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--ocr_path", type=str, default="./data/")
parser.add_argument("--ocr_dataset", type=str, default="textVQA")
parser.add_argument("--answers-file", type=str, default="./answers_textvqa")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
model_name = "Salesforce/blip2-opt-6.7b"
device = "cuda"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2ForConditionalGeneration.from_pretrained(
model_name, torch_dtype=torch.float16
)
model.to(device)
ans_file = open(args.answers_file + '/' + args.ocr_dataset + '.jsonl', "w", encoding="utf-8")
with open(args.ocr_path+args.ocr_dataset+'/TextVQA_0.5.1_val.json', 'r') as f:
data = json.load(f)
for i in range(len(data['data'])):
prompt = data['data'][i]['question']
image_file = args.ocr_path+args.ocr_dataset+'/train_images/'+data['data'][i]['image_id']+'.jpg'
question_id = data['data'][i]['question_id']
gt_answers = data['data'][i]['answers']
image = Image.open(image_file)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
generated_ids = model.generate(**inputs)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
ans_file.write(json.dumps({
"image_path": image_file,
"question_id": question_id,
"prompt": prompt,
"answer": generated_text,
"gt_answers":gt_answers,
"model_name":model_name}) + "\n")
ans_file.flush()
ans_file.close()