Files
MultimodalOCR/kie_eval.py
2023-05-12 16:54:54 +08:00

49 lines
2.3 KiB
Python

from PIL import Image
import requests
from transformers import Blip2Processor, Blip2ForConditionalGeneration
import torch
import os
import argparse
import json
#dataset_name=['ct80','IC13_857','IC15_1811','IIIT5K','svt','svtp']
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
parser.add_argument("--ocr_path", type=str, default="/path/to/GPT4/KIE_data/")
parser.add_argument("--ocr_dataset", type=str, default="FUNSD")
parser.add_argument("--answers-file", type=str, default="/path/to/GPT4/KIE_data/cmr/blip2answer")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
model_name = "Salesforce/blip2-opt-6.7b"
device = "cuda"
processor = Blip2Processor.from_pretrained(model_name)
model = Blip2ForConditionalGeneration.from_pretrained(
model_name, torch_dtype=torch.float16
)
model.to(device)
# prompt = "Question: what is written in the image? Answer:"
ans_file = open(args.answers_file + '/' + args.ocr_dataset + '.jsonl', "w+", encoding="utf-8")
with open(args.ocr_path+ args.ocr_dataset +'.txt', 'r') as file:
for line in file:
image_file = line.split()[0]
question_start = line.find('question:') + len('question:')
label_start = line.find('label:') + len('label:')
question = line[question_start:line.find('label:')].strip()
label = line[label_start:].strip()
prompt = f"What is the '{question}' information written in this image ?"
img_path = os.path.join(args.ocr_path+args.ocr_dataset, image_file)
image = Image.open(img_path)
inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16)
generated_ids = model.generate(**inputs)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
ans_file.write(json.dumps({"prompt": prompt,
"image_path": image_file,
"label": label,
"text": generated_text,
"model_name":model_name}) + "\n")
ans_file.flush()
ans_file.close()