
* Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * remove submodule * add mPLUG MiniGPT4 * Update Readme.md * Update Readme.md * Update Readme.md --------- Co-authored-by: Yuliang Liu <34134635+Yuliang-Liu@users.noreply.github.com>
172 lines
5.8 KiB
Python
172 lines
5.8 KiB
Python
from PIL import Image
|
|
import torch
|
|
import gradio as gr
|
|
import logging
|
|
import sys
|
|
import os
|
|
import json
|
|
import requests
|
|
import datetime
|
|
import uuid
|
|
import base64
|
|
from io import BytesIO
|
|
import time
|
|
import sys
|
|
sys.path.append("..")
|
|
|
|
from .io_utils import IO, DefaultIO, OSS
|
|
|
|
import transformers
|
|
from mplug_owl.processing_mplug_owl import MplugOwlProcessor, MplugOwlImageProcessor
|
|
from mplug_owl.modeling_mplug_owl import MplugOwlForConditionalGeneration
|
|
from mplug_owl.configuration_mplug_owl import MplugOwlConfig
|
|
from mplug_owl.tokenization_mplug_owl import MplugOwlTokenizer
|
|
from transformers import GenerationConfig
|
|
|
|
from .model_utils import post_process_output, Stream, Iteratorize
|
|
|
|
server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**"
|
|
|
|
class mPLUG_Owl_Server:
|
|
def __init__(
|
|
self,
|
|
base_model='MAGAer13/mplug-owl-llama-7b',
|
|
log_dir='./',
|
|
load_in_8bit=False,
|
|
bf16=True,
|
|
device="cuda",
|
|
io=None
|
|
):
|
|
self.log_dir = log_dir
|
|
self.image_processor= MplugOwlImageProcessor.from_pretrained(base_model)
|
|
self.tokenizer= MplugOwlTokenizer.from_pretrained(base_model)
|
|
self.processor = MplugOwlProcessor(self.image_processor, self.tokenizer)
|
|
self.model = MplugOwlForConditionalGeneration.from_pretrained(
|
|
base_model,
|
|
load_in_8bit=load_in_8bit,
|
|
torch_dtype=torch.bfloat16 if bf16 else torch.half,
|
|
device_map="auto"
|
|
)
|
|
self.tokenizer = self.processor.tokenizer
|
|
self.bf16 = bf16
|
|
self.load_in_8bit = load_in_8bit
|
|
|
|
if not load_in_8bit:
|
|
if bf16:
|
|
self.model.bfloat16()
|
|
else:
|
|
self.model.half()
|
|
self.model.eval()
|
|
|
|
self.io = io
|
|
|
|
def evaluate(
|
|
self,
|
|
pixel_values=None,
|
|
input_ids=None,
|
|
temperature=1.0,
|
|
top_p=0.9,
|
|
top_k=5,
|
|
num_beams=3,
|
|
max_new_tokens=256,
|
|
stream_output=True,
|
|
length_penalty=1.0,
|
|
no_repeat_ngram_size=2,
|
|
do_sample=False,
|
|
early_stopping=True,
|
|
**kwargs
|
|
):
|
|
generation_config = dict(
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
num_beams=num_beams,
|
|
no_repeat_ngram_size=no_repeat_ngram_size,
|
|
do_sample=do_sample,
|
|
early_stopping=early_stopping,
|
|
length_penalty=length_penalty,
|
|
)
|
|
|
|
generate_params = {
|
|
"pixel_values": pixel_values,
|
|
"input_ids": input_ids,
|
|
"return_dict_in_generate": True,
|
|
"output_scores": True,
|
|
"max_new_tokens": max_new_tokens,
|
|
}
|
|
generate_params.update(generation_config)
|
|
|
|
if stream_output:
|
|
# Stream the reply 1 token at a time.
|
|
# This is based on the trick of using 'stopping_criteria' to create an iterator,
|
|
# from https://github.com/oobabooga/text-generation-webui/blob/ad37f396fc8bcbab90e11ecf17c56c97bfbd4a9c/modules/text_generation.py#L216-L243.
|
|
|
|
def generate_with_callback(callback=None, **kwargs):
|
|
kwargs.setdefault(
|
|
"stopping_criteria", transformers.StoppingCriteriaList()
|
|
)
|
|
kwargs["stopping_criteria"].append(Stream(callback_func=callback))
|
|
with torch.no_grad():
|
|
self.model.generate(**kwargs)
|
|
|
|
def generate_with_streaming(**kwargs):
|
|
return Iteratorize(generate_with_callback, kwargs, callback=None)
|
|
|
|
with generate_with_streaming(**generate_params) as generator:
|
|
for output in generator:
|
|
# new_tokens = len(output) - len(input_ids[0])
|
|
decoded_output = self.tokenizer.decode(output)
|
|
|
|
if output[-1] in [self.tokenizer.eos_token_id]:
|
|
break
|
|
|
|
yield post_process_output(decoded_output)
|
|
return # early return for stream_output
|
|
|
|
with torch.no_grad():
|
|
generation_output = self.model.generate(
|
|
pixel_values=pixel_values,
|
|
input_ids=input_ids,
|
|
return_dict_in_generate=True,
|
|
output_scores=True,
|
|
max_new_tokens=max_new_tokens,
|
|
**generation_config
|
|
)
|
|
s = generation_output.sequences[0].cpu()
|
|
output = self.tokenizer.decode(s)
|
|
yield post_process_output(output)
|
|
|
|
|
|
def predict(self, data):
|
|
prompt = [data['text_input']]
|
|
images = data['images'] if len(data['images']) > 0 else None
|
|
if images:
|
|
images = [Image.open(BytesIO(base64.b64decode(image))) for image in images]
|
|
inputs = self.processor(text=prompt, images=images, return_tensors='pt')
|
|
|
|
input_ids = inputs['input_ids'].to(self.model.device)
|
|
if 'pixel_values' in inputs:
|
|
if self.load_in_8bit:
|
|
pixel_values = inputs['pixel_values'].half().to(self.model.device)
|
|
elif self.bf16:
|
|
pixel_values = inputs['pixel_values'].bfloat16().to(self.model.device)
|
|
else:
|
|
pixel_values = inputs['pixel_values'].half().to(self.model.device)
|
|
else:
|
|
pixel_values = None
|
|
|
|
cache = None
|
|
|
|
try:
|
|
for x in self.evaluate(pixel_values, input_ids, stream_output=True, **data['generation_config']):
|
|
cache = x
|
|
yield (x, True)
|
|
except ValueError as e:
|
|
print("Caught ValueError:", e)
|
|
yield (server_error_msg, False)
|
|
except torch.cuda.CudaError as e:
|
|
print("Caught torch.cuda.CudaError:", e)
|
|
yield (server_error_msg, False)
|
|
|
|
return
|