330 lines
11 KiB
Python
330 lines
11 KiB
Python
import json
|
|
import multiprocessing
|
|
import os
|
|
from argparse import ArgumentParser
|
|
from multiprocessing import Manager, Pool, Queue
|
|
|
|
import torch
|
|
from mplug_docowl.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
|
|
from mplug_docowl.conversation import conv_templates
|
|
from mplug_docowl.mm_utils import (
|
|
KeywordsStoppingCriteria,
|
|
get_model_name_from_path,
|
|
process_images,
|
|
tokenizer_image_token,
|
|
)
|
|
from mplug_docowl.model.builder import load_pretrained_model
|
|
from mplug_docowl.processor import DocProcessor
|
|
from tqdm import tqdm
|
|
from transformers import TextStreamer
|
|
|
|
|
|
# https://github.com/X-PLUG/mPLUG-DocOwl/blob/main/DocOwl1.5/docowl_infer.py
|
|
def split_list(lst, n):
|
|
length = len(lst)
|
|
avg = length // n # 每份的大小
|
|
result = [] # 存储分割后的子列表
|
|
for i in range(n - 1):
|
|
result.append(lst[i * avg : (i + 1) * avg])
|
|
result.append(lst[(n - 1) * avg :])
|
|
return result
|
|
|
|
|
|
def save_json(json_list, save_path):
|
|
with open(save_path, "w", encoding="utf-8") as file:
|
|
json.dump(json_list, file, indent=4)
|
|
|
|
|
|
def _get_args():
|
|
parser = ArgumentParser()
|
|
parser.add_argument("--image_folder", type=str, default="./OCRBench_Images")
|
|
parser.add_argument("--output_folder", type=str, default="./results")
|
|
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
|
|
parser.add_argument("--model_path", type=str, default="mPLUG/DocOwl1.5")
|
|
parser.add_argument("--save_name", type=str, default="mplug-DocOwl1.5")
|
|
parser.add_argument("--conv_mode", type=str, default="mplug_owl2")
|
|
parser.add_argument("--num_workers", type=int, default=8)
|
|
parser.add_argument("--temperature", type=float, default=0.0)
|
|
args = parser.parse_args()
|
|
return args
|
|
|
|
|
|
OCRBench_score = {
|
|
"Regular Text Recognition": 0,
|
|
"Irregular Text Recognition": 0,
|
|
"Artistic Text Recognition": 0,
|
|
"Handwriting Recognition": 0,
|
|
"Digit String Recognition": 0,
|
|
"Non-Semantic Text Recognition": 0,
|
|
"Scene Text-centric VQA": 0,
|
|
"Doc-oriented VQA": 0,
|
|
"Key Information Extraction": 0,
|
|
"Handwritten Mathematical Expression Recognition": 0,
|
|
}
|
|
AllDataset_score = {
|
|
"IIIT5K": 0,
|
|
"svt": 0,
|
|
"IC13_857": 0,
|
|
"IC15_1811": 0,
|
|
"svtp": 0,
|
|
"ct80": 0,
|
|
"cocotext": 0,
|
|
"ctw": 0,
|
|
"totaltext": 0,
|
|
"HOST": 0,
|
|
"WOST": 0,
|
|
"WordArt": 0,
|
|
"IAM": 0,
|
|
"ReCTS": 0,
|
|
"ORAND": 0,
|
|
"NonSemanticText": 0,
|
|
"SemanticText": 0,
|
|
"STVQA": 0,
|
|
"textVQA": 0,
|
|
"ocrVQA": 0,
|
|
"ESTVQA": 0,
|
|
"ESTVQA_cn": 0,
|
|
"docVQA": 0,
|
|
"infographicVQA": 0,
|
|
"ChartQA": 0,
|
|
"ChartQA_Human": 0,
|
|
"FUNSD": 0,
|
|
"SROIE": 0,
|
|
"POIE": 0,
|
|
"HME100k": 0,
|
|
}
|
|
num_all = {
|
|
"IIIT5K": 0,
|
|
"svt": 0,
|
|
"IC13_857": 0,
|
|
"IC15_1811": 0,
|
|
"svtp": 0,
|
|
"ct80": 0,
|
|
"cocotext": 0,
|
|
"ctw": 0,
|
|
"totaltext": 0,
|
|
"HOST": 0,
|
|
"WOST": 0,
|
|
"WordArt": 0,
|
|
"IAM": 0,
|
|
"ReCTS": 0,
|
|
"ORAND": 0,
|
|
"NonSemanticText": 0,
|
|
"SemanticText": 0,
|
|
"STVQA": 0,
|
|
"textVQA": 0,
|
|
"ocrVQA": 0,
|
|
"ESTVQA": 0,
|
|
"ESTVQA_cn": 0,
|
|
"docVQA": 0,
|
|
"infographicVQA": 0,
|
|
"ChartQA": 0,
|
|
"ChartQA_Human": 0,
|
|
"FUNSD": 0,
|
|
"SROIE": 0,
|
|
"POIE": 0,
|
|
"HME100k": 0,
|
|
}
|
|
|
|
|
|
def eval_worker(args, data, eval_id, output_queue):
|
|
print(f"Process {eval_id} start.")
|
|
model_name = get_model_name_from_path(args.model_path)
|
|
tokenizer, model, _, _ = load_pretrained_model(
|
|
args.model_path,
|
|
None,
|
|
model_name,
|
|
load_8bit=False,
|
|
load_4bit=False,
|
|
device=f"cuda:{eval_id}",
|
|
)
|
|
|
|
doc_image_processor = DocProcessor(
|
|
image_size=448,
|
|
anchors="grid_9",
|
|
add_global_img=True,
|
|
add_textual_crop_indicator=True,
|
|
)
|
|
|
|
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
for i in tqdm(range(len(data))):
|
|
img_path = os.path.join(args.image_folder, data[i]["image_path"])
|
|
qs = data[i]["question"]
|
|
if data[i].get("predict", 0) != 0:
|
|
print(f"{img_path} predict exist, continue.")
|
|
continue
|
|
|
|
image_tensor, patch_positions, text = doc_image_processor(
|
|
images=img_path, query="<|image|>" + qs
|
|
)
|
|
image_tensor = image_tensor.to(model.device, dtype=torch.float16)
|
|
patch_positions = patch_positions.to(model.device)
|
|
|
|
conv = conv_templates["mplug_owl2"].copy()
|
|
conv.append_message(conv.roles[0], text)
|
|
conv.append_message(conv.roles[1], None)
|
|
prompt = conv.get_prompt()
|
|
|
|
input_ids = (
|
|
tokenizer_image_token(
|
|
prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt"
|
|
)
|
|
.unsqueeze(0)
|
|
.to(model.device)
|
|
)
|
|
|
|
stop_str = conv.sep2
|
|
keywords = [stop_str]
|
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
|
with torch.inference_mode():
|
|
output_ids = model.generate(
|
|
input_ids,
|
|
images=image_tensor,
|
|
patch_positions=patch_positions,
|
|
do_sample=False,
|
|
temperature=1.0,
|
|
max_new_tokens=512,
|
|
streamer=streamer,
|
|
use_cache=True,
|
|
stopping_criteria=[stopping_criteria],
|
|
)
|
|
|
|
outputs = tokenizer.decode(output_ids[0, input_ids.shape[1] :]).strip()
|
|
data[i]["predict"] = outputs
|
|
output_queue.put({eval_id: data})
|
|
print(f"Process {eval_id} has completed.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
multiprocessing.set_start_method("spawn")
|
|
args = _get_args()
|
|
|
|
if os.path.exists(os.path.join(args.output_folder, f"{args.save_name}.json")):
|
|
data_path = os.path.join(args.output_folder, f"{args.save_name}.json")
|
|
print(
|
|
f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}."
|
|
)
|
|
else:
|
|
data_path = args.OCRBench_file
|
|
|
|
with open(data_path, "r", encoding="utf-8") as f:
|
|
data = json.load(f)
|
|
|
|
data_list = split_list(data, args.num_workers)
|
|
output_queue = Manager().Queue()
|
|
|
|
pool = Pool(processes=args.num_workers)
|
|
for i in range(len(data_list)):
|
|
# pool.apply(eval_worker, args=(args, data_list[i], i, output_queue))
|
|
pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue))
|
|
pool.close()
|
|
pool.join()
|
|
|
|
results = {}
|
|
while not output_queue.empty():
|
|
result = output_queue.get()
|
|
results.update(result)
|
|
data = []
|
|
for i in range(len(data_list)):
|
|
data.extend(results[i])
|
|
|
|
for i in range(len(data)):
|
|
data_type = data[i]["type"]
|
|
dataset_name = data[i]["dataset_name"]
|
|
answers = data[i]["answers"]
|
|
if data[i].get("predict", 0) == 0:
|
|
continue
|
|
predict = data[i]["predict"]
|
|
data[i]["result"] = 0
|
|
if dataset_name == "HME100k":
|
|
if type(answers) == list:
|
|
for j in range(len(answers)):
|
|
answer = answers[j].strip().replace("\n", " ").replace(" ", "")
|
|
predict = predict.strip().replace("\n", " ").replace(" ", "")
|
|
if answer in predict:
|
|
data[i]["result"] = 1
|
|
else:
|
|
answers = answers.strip().replace("\n", " ").replace(" ", "")
|
|
predict = predict.strip().replace("\n", " ").replace(" ", "")
|
|
if answers in predict:
|
|
data[i]["result"] = 1
|
|
else:
|
|
if type(answers) == list:
|
|
for j in range(len(answers)):
|
|
answer = answers[j].lower().strip().replace("\n", " ")
|
|
predict = predict.lower().strip().replace("\n", " ")
|
|
if answer in predict:
|
|
data[i]["result"] = 1
|
|
else:
|
|
answers = answers.lower().strip().replace("\n", " ")
|
|
predict = predict.lower().strip().replace("\n", " ")
|
|
if answers in predict:
|
|
data[i]["result"] = 1
|
|
save_json(data, os.path.join(args.output_folder, f"{args.save_name}.json"))
|
|
if len(data) == 1000:
|
|
for i in range(len(data)):
|
|
if data[i].get("result", 100) == 100:
|
|
continue
|
|
OCRBench_score[data[i]["type"]] += data[i]["result"]
|
|
recognition_score = (
|
|
OCRBench_score["Regular Text Recognition"]
|
|
+ OCRBench_score["Irregular Text Recognition"]
|
|
+ OCRBench_score["Artistic Text Recognition"]
|
|
+ OCRBench_score["Handwriting Recognition"]
|
|
+ OCRBench_score["Digit String Recognition"]
|
|
+ OCRBench_score["Non-Semantic Text Recognition"]
|
|
)
|
|
Final_score = (
|
|
recognition_score
|
|
+ OCRBench_score["Scene Text-centric VQA"]
|
|
+ OCRBench_score["Doc-oriented VQA"]
|
|
+ OCRBench_score["Key Information Extraction"]
|
|
+ OCRBench_score["Handwritten Mathematical Expression Recognition"]
|
|
)
|
|
print("###########################OCRBench##############################")
|
|
print(f"Text Recognition(Total 300):{recognition_score}")
|
|
print("------------------Details of Recognition Score-------------------")
|
|
print(
|
|
f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}"
|
|
)
|
|
print(
|
|
f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}"
|
|
)
|
|
print(
|
|
f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}"
|
|
)
|
|
print(
|
|
f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}"
|
|
)
|
|
print(
|
|
f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}"
|
|
)
|
|
print(
|
|
f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}"
|
|
)
|
|
print("----------------------------------------------------------------")
|
|
print(
|
|
f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}"
|
|
)
|
|
print("----------------------------------------------------------------")
|
|
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
|
|
print("----------------------------------------------------------------")
|
|
print(
|
|
f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}"
|
|
)
|
|
print("----------------------------------------------------------------")
|
|
print(
|
|
f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}"
|
|
)
|
|
print("----------------------Final Score-------------------------------")
|
|
print(f"Final Score(Total 1000): {Final_score}")
|
|
else:
|
|
for i in range(len(data)):
|
|
num_all[data[i]["dataset_name"]] += 1
|
|
if data[i].get("result", 100) == 100:
|
|
continue
|
|
AllDataset_score[data[i]["dataset_name"]] += data[i]["result"]
|
|
for key in AllDataset_score.keys():
|
|
print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")
|