
* Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * remove submodule * add mPLUG MiniGPT4 * Update Readme.md * Update Readme.md * Update Readme.md --------- Co-authored-by: Yuliang Liu <34134635+Yuliang-Liu@users.noreply.github.com>
51 lines
2.0 KiB
Python
51 lines
2.0 KiB
Python
import argparse
|
|
import os
|
|
import random
|
|
import numpy as np
|
|
import torch.backends.cudnn as cudnn
|
|
from minigpt4.common.config import Config
|
|
from minigpt4.common.dist_utils import get_rank
|
|
from minigpt4.common.registry import registry
|
|
from minigpt4.conversation.conversation import Chat, CONV_VISION
|
|
|
|
# imports modules for registration
|
|
from minigpt4.datasets.builders import *
|
|
from minigpt4.models import *
|
|
from minigpt4.processors import *
|
|
from minigpt4.runners import *
|
|
from minigpt4.tasks import *
|
|
from ..process import pad_image, resize_image
|
|
from PIL import Image
|
|
import torch
|
|
class MiniGPT4:
|
|
def __init__(self, args, device='cuda:0') -> None:
|
|
args.cfg_path = args.MiniGPT4_cfg_path
|
|
args.options=None
|
|
cfg = Config(args)
|
|
model_config = cfg.model_cfg
|
|
model_config.device_8bit = int(device[-1])
|
|
model_cls = registry.get_model_class(model_config.arch)
|
|
model = model_cls.from_config(model_config).to(device)
|
|
|
|
vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train
|
|
vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg)
|
|
self.chat = Chat(model, vis_processor, device = device)
|
|
def generate(self, image, question, name= 'resize', *kargs):
|
|
chat_state = CONV_VISION.copy()
|
|
num_beams = 1
|
|
temperature = 0.9
|
|
img_list = []
|
|
image = Image.open(image).convert('RGB')
|
|
if name == 'resize':
|
|
image = resize_image(image, (224,224))
|
|
llm_message = self.chat.upload_img(image, chat_state, img_list)
|
|
self.chat.ask(question, chat_state)
|
|
llm_message = self.chat.answer(conv=chat_state,
|
|
img_list=img_list,
|
|
num_beams=num_beams,
|
|
temperature=temperature,
|
|
max_new_tokens=128,
|
|
max_length=640)[0]
|
|
return llm_message
|
|
|