Files
MultimodalOCR/OCRBench/scripts/qwenvl_api.py
2024-12-30 19:30:31 +08:00

139 lines
7.3 KiB
Python

import pathlib
from argparse import ArgumentParser
import json
from tqdm import tqdm
import os
import sys
from http import HTTPStatus
from dashscope import MultiModalConversation
import time
# You should follow the instructions here befor strat: https://help.aliyun.com/zh/dashscope/developer-reference/vl-plus-quick-start
OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0,
"Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,
"Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0}
AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
def save_json(json_list,save_path):
with open(save_path, 'w') as file:
json.dump(json_list, file,indent=4)
def call_with_local_file(img_path, question, model_name):
"""Sample of use local file.
linux&mac file schema: file:///home/images/test.png
windows file schema: file://D:/images/abc.png
"""
local_file_path1 = f'file://{img_path}'
messages = [{
'role': 'system',
'content': [{
'text': 'You are a helpful assistant.'
}]
}, {
'role':
'user',
'content': [
{
'image': local_file_path1
},
{
'text': question
},
]
}]
response = MultiModalConversation.call(model=model_name, messages=messages)
# time.sleep(2) #For qwenvl-max you may need to add this line to avoid the limits.
print(response)
return response['output']['choices'][0]["message"]['content'][0]['text']
def _get_args():
parser = ArgumentParser()
parser.add_argument("--image_folder", type=str, default="./data")
parser.add_argument("--output_path", type=str, default="./results")
parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
parser.add_argument("--model", type=str, default="qwen-vl-max")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = _get_args()
if os.path.exists(os.path.join(args.output_path,f"{args.model}.json")):
data_path = os.path.join(args.output_path,f"{args.model}.json")
else:
data_path = args.OCRBench_file
with open(data_path, "r") as f:
data = json.load(f)
for i in tqdm(range(len(data))):
img_path = os.path.join(args.image_folder, data[i]['image_path'])
question = data[i]['question']
if data[i].get("predict", 0)!=0:
print(f"{img_path} predict exist, continue.")
continue
try:
response = call_with_local_file(img_path, question, args.model)
data[i]['predict'] = response
except:
print("QwenVL api failed")
save_json(data, os.path.join(args.output_path,f"{args.model}.json"))
for i in range(len(data)):
data_type = data[i]["type"]
dataset_name = data[i]["dataset_name"]
answers = data[i]["answers"]
if data[i].get('predict',0)==0:
continue
predict = data[i]['predict']
data[i]['result'] = 0
if dataset_name == "HME100k":
if type(answers)==list:
for j in range(len(answers)):
answer = answers[j].strip().replace("\n"," ").replace(" ","")
predict = predict.strip().replace("\n"," ").replace(" ","")
if answer in predict:
data[i]['result'] = 1
else:
answers = answers.strip().replace("\n"," ").replace(" ","")
predict = predict.strip().replace("\n"," ").replace(" ","")
if answers in predict:
data[i]['result'] = 1
else:
if type(answers)==list:
for j in range(len(answers)):
answer = answers[j].lower().strip().replace("\n"," ")
predict = predict.lower().strip().replace("\n"," ")
if answer in predict:
data[i]['result'] = 1
else:
answers = answers.lower().strip().replace("\n"," ")
predict = predict.lower().strip().replace("\n"," ")
if answers in predict:
data[i]['result'] = 1
save_json(data, os.path.join(args.output_path,f"{args.model}.json"))
for i in range(len(data)):
if data[i].get("result",100)==100:
continue
OCRBench_score[data[i]['type']] += data[i]['result']
recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition']
Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition']
print("###########################OCRBench##############################")
print(f"Text Recognition(Total 300):{recognition_score}")
print("------------------Details of Recognition Score-------------------")
print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}")
print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}")
print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}")
print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}")
print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}")
print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}")
print("----------------------------------------------------------------")
print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}")
print("----------------------------------------------------------------")
print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
print("----------------------------------------------------------------")
print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}")
print("----------------------------------------------------------------")
print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}")
print("----------------------Final Score-------------------------------")
print(f"Final Score(Total 1000): {Final_score}")