import pathlib from argparse import ArgumentParser import json from tqdm import tqdm import os import sys from http import HTTPStatus from dashscope import MultiModalConversation import time # You should follow the instructions here befor strat: https://help.aliyun.com/zh/dashscope/developer-reference/vl-plus-quick-start OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0, "Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0, "Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0} AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0, "STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0} num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0, "STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0} def save_json(json_list,save_path): with open(save_path, 'w') as file: json.dump(json_list, file,indent=4) def call_with_local_file(img_path, question, model_name): """Sample of use local file. linux&mac file schema: file:///home/images/test.png windows file schema: file://D:/images/abc.png """ local_file_path1 = f'file://{img_path}' messages = [{ 'role': 'system', 'content': [{ 'text': 'You are a helpful assistant.' }] }, { 'role': 'user', 'content': [ { 'image': local_file_path1 }, { 'text': question }, ] }] response = MultiModalConversation.call(model=model_name, messages=messages) # time.sleep(2) #For qwenvl-max you may need to add this line to avoid the limits. print(response) return response['output']['choices'][0]["message"]['content'][0]['text'] def _get_args(): parser = ArgumentParser() parser.add_argument("--image_folder", type=str, default="./data") parser.add_argument("--output_path", type=str, default="./results") parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json") parser.add_argument("--model", type=str, default="qwen-vl-max") args = parser.parse_args() return args if __name__ == "__main__": args = _get_args() if os.path.exists(os.path.join(args.output_path,f"{args.model}.json")): data_path = os.path.join(args.output_path,f"{args.model}.json") else: data_path = args.OCRBench_file with open(data_path, "r") as f: data = json.load(f) for i in tqdm(range(len(data))): img_path = os.path.join(args.image_folder, data[i]['image_path']) question = data[i]['question'] if data[i].get("predict", 0)!=0: print(f"{img_path} predict exist, continue.") continue try: response = call_with_local_file(img_path, question, args.model) data[i]['predict'] = response except: print("QwenVL api failed") save_json(data, os.path.join(args.output_path,f"{args.model}.json")) for i in range(len(data)): data_type = data[i]["type"] dataset_name = data[i]["dataset_name"] answers = data[i]["answers"] if data[i].get('predict',0)==0: continue predict = data[i]['predict'] data[i]['result'] = 0 if dataset_name == "HME100k": if type(answers)==list: for j in range(len(answers)): answer = answers[j].strip().replace("\n"," ").replace(" ","") predict = predict.strip().replace("\n"," ").replace(" ","") if answer in predict: data[i]['result'] = 1 else: answers = answers.strip().replace("\n"," ").replace(" ","") predict = predict.strip().replace("\n"," ").replace(" ","") if answers in predict: data[i]['result'] = 1 else: if type(answers)==list: for j in range(len(answers)): answer = answers[j].lower().strip().replace("\n"," ") predict = predict.lower().strip().replace("\n"," ") if answer in predict: data[i]['result'] = 1 else: answers = answers.lower().strip().replace("\n"," ") predict = predict.lower().strip().replace("\n"," ") if answers in predict: data[i]['result'] = 1 save_json(data, os.path.join(args.output_path,f"{args.model}.json")) for i in range(len(data)): if data[i].get("result",100)==100: continue OCRBench_score[data[i]['type']] += data[i]['result'] recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition'] Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition'] print("###########################OCRBench##############################") print(f"Text Recognition(Total 300):{recognition_score}") print("------------------Details of Recognition Score-------------------") print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}") print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}") print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}") print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}") print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}") print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}") print("----------------------------------------------------------------") print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}") print("----------------------------------------------------------------") print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}") print("----------------------------------------------------------------") print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}") print("----------------------------------------------------------------") print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}") print("----------------------Final Score-------------------------------") print(f"Final Score(Total 1000): {Final_score}")