import pathlib import textwrap from argparse import ArgumentParser import google.generativeai as genai import json from PIL import Image from IPython.display import display from IPython.display import Markdown from tqdm import tqdm import os import sys OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0, "Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,"Doc-oriented VQA":0, "Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0} AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0, "STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0} num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0, "STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0} def save_json(json_list,save_path): with open(save_path, 'w') as file: json.dump(json_list, file,indent=4) def _get_args(): parser = ArgumentParser() parser.add_argument("--image_folder", type=str, default="./OCRBench_Images") parser.add_argument("--output_path", type=str, default="./results") parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json") parser.add_argument("--GOOGLE_API_KEY", type=str, default="") parser.add_argument("--model", type=str, default="gemini-pro-vision") args = parser.parse_args() return args if __name__ == "__main__": args = _get_args() genai.configure(api_key=args.GOOGLE_API_KEY) model = genai.GenerativeModel(args.model) if os.path.exists(os.path.join(args.output_path,f"{args.model}.json")): data_path = os.path.join(args.output_path,f"{args.model}.json") else: data_path = args.OCRBench_file with open(data_path, "r") as f: data = json.load(f) for i in tqdm(range(len(data))): img_path = os.path.join(args.image_folder, data[i]['image_path']) question = data[i]['question'] if data[i].get("predict", 0)!=0: print(f"{img_path} predict exist, continue.") continue try: img = Image.open(img_path).convert("RGB") response = model.generate_content([question, img]) data[i]['predict'] = response.text save_json(data, os.path.join(args.output_path,f"{args.model}.json")) except: print(f"{img_path}: API call failed.") for i in range(len(data)): data_type = data[i]["type"] dataset_name = data[i]["dataset_name"] answers = data[i]["answers"] if data[i].get('predict',0)==0: continue predict = data[i]['predict'] data[i]['result'] = 0 if dataset_name == "HME100k": if type(answers)==list: for j in range(len(answers)): answer = answers[j].strip().replace("\n"," ").replace(" ","") predict = predict.strip().replace("\n"," ").replace(" ","") if answer in predict: data[i]['result'] = 1 else: answers = answers.strip().replace("\n"," ").replace(" ","") predict = predict.strip().replace("\n"," ").replace(" ","") if answers in predict: data[i]['result'] = 1 else: if type(answers)==list: for j in range(len(answers)): answer = answers[j].lower().strip().replace("\n"," ") predict = predict.lower().strip().replace("\n"," ") if answer in predict: data[i]['result'] = 1 else: answers = answers.lower().strip().replace("\n"," ") predict = predict.lower().strip().replace("\n"," ") if answers in predict: data[i]['result'] = 1 save_json(data, os.path.join(args.output_path,f"{args.model}.json")) for i in range(len(data)): if data[i].get("result",100)==100: continue OCRBench_score[data[i]['type']] += data[i]['result'] recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition'] Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition'] print("###########################OCRBench##############################") print(f"Text Recognition(Total 300):{recognition_score}") print("------------------Details of Recognition Score-------------------") print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}") print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}") print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}") print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}") print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}") print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}") print("----------------------------------------------------------------") print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}") print("----------------------------------------------------------------") print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}") print("----------------------------------------------------------------") print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}") print("----------------------------------------------------------------") print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}") print("----------------------Final Score-------------------------------") print(f"Final Score(Total 1000): {Final_score}")