# coding=utf-8 # Copyright 2023 Alibaba Inc. and The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import copy import os from typing import Union from transformers.configuration_utils import PretrainedConfig from transformers.models.auto import CONFIG_MAPPING from transformers.models.auto.modeling_auto import \ MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from transformers.utils import logging logger = logging.get_logger(__name__) class mPLUG_OwlVisualAbstractorConfig(PretrainedConfig): model_type = "mPLUG_OwlVisualAbstractor" def __init__( self, vocab_size=30522, hidden_size=1024, num_hidden_layers=6, num_attention_heads=8, intermediate_size=3072, hidden_act="gelu", hidden_dropout_prob=0.1, attention_probs_dropout_prob=0.1, max_position_embeddings=512, initializer_range=0.02, layer_norm_eps=1e-5, pad_token_id=0, position_embedding_type="absolute", classifier_dropout=None, cross_attention_frequency=2, encoder_hidden_size=1024, **kwargs, ): super().__init__(pad_token_id=pad_token_id, **kwargs) self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.hidden_act = hidden_act self.intermediate_size = intermediate_size self.hidden_dropout_prob = hidden_dropout_prob self.attention_probs_dropout_prob = attention_probs_dropout_prob self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.layer_norm_eps = layer_norm_eps self.position_embedding_type = position_embedding_type self.classifier_dropout = classifier_dropout self.cross_attention_frequency = cross_attention_frequency self.encoder_hidden_size = encoder_hidden_size @classmethod def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig": config_dict, kwargs = cls.get_config_dict( pretrained_model_name_or_path, **kwargs) if config_dict.get("model_type") == "mplug_owl": config_dict = config_dict["abstractor_config"] if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(config_dict, **kwargs) class mPLUG_OwlConfig(PretrainedConfig): model_type = "mplug_owl" is_composition = True def __init__(self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs): super().__init__(**kwargs) from clip.configuration_clip import CLIPVisionConfig if vision_config is None: # By defalt we use openai-clip large patch14 vision_config = CLIPVisionConfig( **vision_config_dict, layer_norm_eps=1e-6).to_dict() logger.info( "vision_config is None.") if visual_abstractor_config is None: visual_abstractor_config = {} logger.info( "abstractor_config is None. ") if text_config is None: # we use LLAMA 7b by default from transformers.models.llama.configuration_llama import \ LlamaConfig text_config = LlamaConfig(pad_token_id=2).to_dict() logger.info("text_config is None.") self.vision_config = CLIPVisionConfig(**vision_config) self.visual_abstractor_config = mPLUG_OwlVisualAbstractorConfig( **visual_abstractor_config) self.visual_abstractor_config.layer_norm_eps = 1e-6 text_model_type = text_config["model_type"] if "model_type" in text_config else "opt" self.text_config = CONFIG_MAPPING[text_model_type](**text_config) self.tie_word_embeddings = self.text_config.tie_word_embeddings self.is_encoder_decoder = self.text_config.is_encoder_decoder self.num_query_tokens = num_query_tokens self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES self.initializer_factor = 1.0 self.initializer_range = 0.02 def to_dict(self): """ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. Returns: `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, """ output = copy.deepcopy(self.__dict__) output["vision_config"] = self.vision_config.to_dict() output["abstractor_config"] = self.visual_abstractor_config.to_dict() output["text_config"] = self.text_config.to_dict() output["model_type"] = self.__class__.model_type return output vision_config_dict = { "hidden_size": 1024, "intermediate_size": 4096, "num_attention_heads": 8, "num_hidden_layers": 24, "patch_size": 14, "projection_dim": 768}