import json from argparse import ArgumentParser import torch import os import json from tqdm import tqdm from PIL import Image import math import multiprocessing from multiprocessing import Pool, Queue, Manager from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig from llava import LlavaLlamaForCausalLM from llava.conversation import conv_templates from llava import conversation as conversation_lib from llava.utils import disable_torch_init from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria from PIL import Image,ImageOps # https://github.com/SALT-NLP/LLaVAR/blob/main/LLaVA/llava/eval/model_vqa.py def resize_image(image, target_size): width, height = image.size aspect_ratio = width / height if aspect_ratio > 1: new_width = target_size[0] new_height = int(new_width / aspect_ratio) else: new_height = target_size[1] new_width = int(new_height * aspect_ratio) image = image.resize((new_width, new_height)) width_diff = target_size[0] - image.size[0] height_diff = target_size[1] - image.size[1] left_padding = 0 top_padding = 0 right_padding = width_diff - left_padding bottom_padding = height_diff - top_padding padded_image = ImageOps.expand(image, border=(left_padding, top_padding, right_padding, bottom_padding), fill=0) return padded_image DEFAULT_IMAGE_TOKEN = "" DEFAULT_IMAGE_PATCH_TOKEN = "" DEFAULT_IM_START_TOKEN = "" DEFAULT_IM_END_TOKEN = "" def patch_config(config): patch_dict = { "use_mm_proj": True, "mm_vision_tower": "openai/clip-vit-large-patch14", "mm_hidden_size": 1024 } cfg = AutoConfig.from_pretrained(config) if not hasattr(cfg, "mm_vision_tower"): print(f'`mm_vision_tower` not found in `{config}`, applying patch and save to disk.') for k, v in patch_dict.items(): setattr(cfg, k, v) cfg.save_pretrained(config) def split_list(lst, n): length = len(lst) avg = length // n # 每份的大小 result = [] # 存储分割后的子列表 for i in range(n - 1): result.append(lst[i*avg:(i+1)*avg]) result.append(lst[(n-1)*avg:]) return result def save_json(json_list,save_path): with open(save_path, 'w') as file: json.dump(json_list, file,indent=4) def _get_args(): parser = ArgumentParser() parser.add_argument("--image_folder", type=str, default="./OCRBench_Images") parser.add_argument("--output_folder", type=str, default="./results") parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json") parser.add_argument("--model_path", type=str, default="./model_weights/LLaVar") parser.add_argument("--save_name", type=str, default="llavar") parser.add_argument("--conv-mode", type=str, default="llava_v1") parser.add_argument("--mm-projector", type=str, default=None) parser.add_argument("--vision-tower", type=str, default=None) parser.add_argument("--num_workers", type=int, default=8) args = parser.parse_args() return args OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0, "Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,"Doc-oriented VQA":0, "Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0} AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0, "STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0} num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0, "STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0} def eval_worker(args, data, eval_id, output_queue): print(f"Process {eval_id} start.") device = f"cuda:{eval_id}" disable_torch_init() model_name = os.path.expanduser(args.model_path) tokenizer = AutoTokenizer.from_pretrained(model_name) if args.mm_projector is None: patch_config(model_name) model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device) image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16) mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) vision_tower = model.model.vision_tower[0] vision_tower.to(device=device, dtype=torch.float16) vision_config = vision_tower.config vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] vision_config.use_im_start_end = mm_use_im_start_end if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2 else: # in case of using a pretrained model with only a MLP projector weights model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).to(device) vision_tower = CLIPVisionModel.from_pretrained(args.vision_tower, torch_dtype=torch.float16).to(device) image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower, torch_dtype=torch.float16) mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) if mm_use_im_start_end: tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) vision_config = vision_tower.config vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0] vision_config.use_im_start_end = mm_use_im_start_end if mm_use_im_start_end: vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN]) image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2 mm_projector = torch.nn.Linear(vision_config.hidden_size, model.config.hidden_size) mm_projector_weights = torch.load(args.mm_projector, map_location='cpu') mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()}) model.model.mm_projector = mm_projector.to(device).half() model.model.vision_tower = [vision_tower] for i in tqdm(range(len(data))): img_path = os.path.join(args.image_folder, data[i]['image_path']) qs = data[i]['question'] # qs = qs+"\nAnswer the question using a single word or phrase." if data[i].get("predict", 0)!=0: print(f"{img_path} predict exist, continue.") continue if mm_use_im_start_end: qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN else: qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len if args.conv_mode == 'simple_legacy': qs += '\n\n### Response:' # conv = default_conversation.copy() conv = conv_templates[args.conv_mode].copy() conv.append_message(conv.roles[0], qs) # modified conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() inputs = tokenizer([prompt]) image = Image.open(img_path) # if "REval" in args.image_folder: image = resize_image(image, (336, 336)) image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0] input_ids = torch.as_tensor(inputs.input_ids).to(device) # new stopping implementation class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords, tokenizer, input_ids): self.keywords = keywords self.tokenizer = tokenizer self.start_len = None self.input_ids = input_ids def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: if self.start_len is None: self.start_len = self.input_ids.shape[1] else: outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0] for keyword in self.keywords: if keyword in outputs: return True return False # keywords = ['###'] # modified keywords = [''] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor.unsqueeze(0).half().to(device), do_sample=False, temperature=0, max_new_tokens=200, stopping_criteria=[stopping_criteria]) input_token_len = input_ids.shape[1] n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item() if n_diff_input_output > 0: print(f'[Warning] Sample {i}: {n_diff_input_output} output_ids are not the same as the input_ids') outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0] # modified if args.conv_mode == 'simple_legacy' or args.conv_mode == 'simple': while True: cur_len = len(outputs) outputs = outputs.strip() for pattern in ['###', 'Assistant:', 'Response:']: if outputs.startswith(pattern): outputs = outputs[len(pattern):].strip() if len(outputs) == cur_len: break if conv.sep_style == conversation_lib.SeparatorStyle.TWO: sep = conv.sep2 else: sep = conv.sep try: index = outputs.index(sep) except ValueError: outputs += sep index = outputs.index(sep) outputs = outputs[:index].strip() data[i]['predict'] = outputs output_queue.put({eval_id: data}) print(f"Process {eval_id} has completed.") if __name__=="__main__": multiprocessing.set_start_method('spawn') args = _get_args() if os.path.exists(os.path.join(args.output_folder,f"{args.save_name}.json")): data_path = os.path.join(args.output_folder,f"{args.save_name}.json") print(f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}.") else: data_path = args.OCRBench_file with open(data_path, "r") as f: data = json.load(f) data_list = split_list(data, args.num_workers) output_queue = Manager().Queue() pool = Pool(processes=args.num_workers) for i in range(len(data_list)): pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue)) pool.close() pool.join() results = {} while not output_queue.empty(): result = output_queue.get() results.update(result) data = [] for i in range(len(data_list)): data.extend(results[i]) for i in range(len(data)): data_type = data[i]["type"] dataset_name = data[i]["dataset_name"] answers = data[i]["answers"] if data[i].get('predict',0)==0: continue predict = data[i]['predict'] data[i]['result'] = 0 if dataset_name == "HME100k": if type(answers)==list: for j in range(len(answers)): answer = answers[j].strip().replace("\n"," ").replace(" ","") predict = predict.strip().replace("\n"," ").replace(" ","") if answer in predict: data[i]['result'] = 1 else: answers = answers.strip().replace("\n"," ").replace(" ","") predict = predict.strip().replace("\n"," ").replace(" ","") if answers in predict: data[i]['result'] = 1 else: if type(answers)==list: for j in range(len(answers)): answer = answers[j].lower().strip().replace("\n"," ") predict = predict.lower().strip().replace("\n"," ") if answer in predict: data[i]['result'] = 1 else: answers = answers.lower().strip().replace("\n"," ") predict = predict.lower().strip().replace("\n"," ") if answers in predict: data[i]['result'] = 1 save_json(data, os.path.join(args.output_folder,f"{args.save_name}.json")) if len(data)==1000: for i in range(len(data)): if data[i].get("result",100)==100: continue OCRBench_score[data[i]['type']] += data[i]['result'] recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition'] Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition'] print("###########################OCRBench##############################") print(f"Text Recognition(Total 300):{recognition_score}") print("------------------Details of Recognition Score-------------------") print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}") print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}") print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}") print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}") print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}") print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}") print("----------------------------------------------------------------") print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}") print("----------------------------------------------------------------") print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}") print("----------------------------------------------------------------") print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}") print("----------------------------------------------------------------") print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}") print("----------------------Final Score-------------------------------") print(f"Final Score(Total 1000): {Final_score}") else: for i in range(len(data)): num_all[data[i]['dataset_name']] += 1 if data[i].get("result",100)==100: continue AllDataset_score[data[i]['dataset_name']] += data[i]['result'] for key in AllDataset_score.keys(): print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")