from PIL import Image import requests from transformers import Blip2Processor, Blip2ForConditionalGeneration import torch import os import argparse import json #dataset_name=['ct80','IC13_857','IC15_1811','IIIT5K','svt','svtp'] def parse_args(): parser = argparse.ArgumentParser(description="Demo") parser.add_argument("--ocr_path", type=str, default="./data/") parser.add_argument("--ocr_dataset", type=str, default="textVQA") parser.add_argument("--answers-file", type=str, default="./answers_textvqa") args = parser.parse_args() return args if __name__ == "__main__": args = parse_args() model_name = "Salesforce/blip2-opt-6.7b" device = "cuda" processor = Blip2Processor.from_pretrained(model_name) model = Blip2ForConditionalGeneration.from_pretrained( model_name, torch_dtype=torch.float16 ) model.to(device) ans_file = open(args.answers_file + '/' + args.ocr_dataset + '.jsonl', "w", encoding="utf-8") with open(args.ocr_path+args.ocr_dataset+'/TextVQA_0.5.1_val.json', 'r') as f: data = json.load(f) for i in range(len(data['data'])): prompt = data['data'][i]['question'] image_file = args.ocr_path+args.ocr_dataset+'/train_images/'+data['data'][i]['image_id']+'.jpg' question_id = data['data'][i]['question_id'] gt_answers = data['data'][i]['answers'] image = Image.open(image_file) inputs = processor(images=image, text=prompt, return_tensors="pt").to(device, torch.float16) generated_ids = model.generate(**inputs) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() ans_file.write(json.dumps({ "image_path": image_file, "question_id": question_id, "prompt": prompt, "answer": generated_text, "gt_answers":gt_answers, "model_name":model_name}) + "\n") ans_file.flush() ans_file.close()