import json import multiprocessing import os from argparse import ArgumentParser from multiprocessing import Manager, Pool, Queue import torch from mplug_docowl.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX from mplug_docowl.conversation import conv_templates from mplug_docowl.mm_utils import ( KeywordsStoppingCriteria, get_model_name_from_path, process_images, tokenizer_image_token, ) from mplug_docowl.model.builder import load_pretrained_model from mplug_docowl.processor import DocProcessor from tqdm import tqdm from transformers import TextStreamer # https://github.com/X-PLUG/mPLUG-DocOwl/blob/main/DocOwl1.5/docowl_infer.py def split_list(lst, n): length = len(lst) avg = length // n # 每份的大小 result = [] # 存储分割后的子列表 for i in range(n - 1): result.append(lst[i * avg : (i + 1) * avg]) result.append(lst[(n - 1) * avg :]) return result def save_json(json_list, save_path): with open(save_path, "w", encoding="utf-8") as file: json.dump(json_list, file, indent=4) def _get_args(): parser = ArgumentParser() parser.add_argument("--image_folder", type=str, default="./OCRBench_Images") parser.add_argument("--output_folder", type=str, default="./results") parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json") parser.add_argument("--model_path", type=str, default="mPLUG/DocOwl1.5") parser.add_argument("--save_name", type=str, default="mplug-DocOwl1.5") parser.add_argument("--conv_mode", type=str, default="mplug_owl2") parser.add_argument("--num_workers", type=int, default=8) parser.add_argument("--temperature", type=float, default=0.0) args = parser.parse_args() return args OCRBench_score = { "Regular Text Recognition": 0, "Irregular Text Recognition": 0, "Artistic Text Recognition": 0, "Handwriting Recognition": 0, "Digit String Recognition": 0, "Non-Semantic Text Recognition": 0, "Scene Text-centric VQA": 0, "Doc-oriented VQA": 0, "Key Information Extraction": 0, "Handwritten Mathematical Expression Recognition": 0, } AllDataset_score = { "IIIT5K": 0, "svt": 0, "IC13_857": 0, "IC15_1811": 0, "svtp": 0, "ct80": 0, "cocotext": 0, "ctw": 0, "totaltext": 0, "HOST": 0, "WOST": 0, "WordArt": 0, "IAM": 0, "ReCTS": 0, "ORAND": 0, "NonSemanticText": 0, "SemanticText": 0, "STVQA": 0, "textVQA": 0, "ocrVQA": 0, "ESTVQA": 0, "ESTVQA_cn": 0, "docVQA": 0, "infographicVQA": 0, "ChartQA": 0, "ChartQA_Human": 0, "FUNSD": 0, "SROIE": 0, "POIE": 0, "HME100k": 0, } num_all = { "IIIT5K": 0, "svt": 0, "IC13_857": 0, "IC15_1811": 0, "svtp": 0, "ct80": 0, "cocotext": 0, "ctw": 0, "totaltext": 0, "HOST": 0, "WOST": 0, "WordArt": 0, "IAM": 0, "ReCTS": 0, "ORAND": 0, "NonSemanticText": 0, "SemanticText": 0, "STVQA": 0, "textVQA": 0, "ocrVQA": 0, "ESTVQA": 0, "ESTVQA_cn": 0, "docVQA": 0, "infographicVQA": 0, "ChartQA": 0, "ChartQA_Human": 0, "FUNSD": 0, "SROIE": 0, "POIE": 0, "HME100k": 0, } def eval_worker(args, data, eval_id, output_queue): print(f"Process {eval_id} start.") model_name = get_model_name_from_path(args.model_path) tokenizer, model, _, _ = load_pretrained_model( args.model_path, None, model_name, load_8bit=False, load_4bit=False, device=f"cuda:{eval_id}", ) doc_image_processor = DocProcessor( image_size=448, anchors="grid_9", add_global_img=True, add_textual_crop_indicator=True, ) streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) for i in tqdm(range(len(data))): img_path = os.path.join(args.image_folder, data[i]["image_path"]) qs = data[i]["question"] if data[i].get("predict", 0) != 0: print(f"{img_path} predict exist, continue.") continue image_tensor, patch_positions, text = doc_image_processor( images=img_path, query="<|image|>" + qs ) image_tensor = image_tensor.to(model.device, dtype=torch.float16) patch_positions = patch_positions.to(model.device) conv = conv_templates["mplug_owl2"].copy() conv.append_message(conv.roles[0], text) conv.append_message(conv.roles[1], None) prompt = conv.get_prompt() input_ids = ( tokenizer_image_token( prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt" ) .unsqueeze(0) .to(model.device) ) stop_str = conv.sep2 keywords = [stop_str] stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) with torch.inference_mode(): output_ids = model.generate( input_ids, images=image_tensor, patch_positions=patch_positions, do_sample=False, temperature=1.0, max_new_tokens=512, streamer=streamer, use_cache=True, stopping_criteria=[stopping_criteria], ) outputs = tokenizer.decode(output_ids[0, input_ids.shape[1] :]).strip() data[i]["predict"] = outputs output_queue.put({eval_id: data}) print(f"Process {eval_id} has completed.") if __name__ == "__main__": multiprocessing.set_start_method("spawn") args = _get_args() if os.path.exists(os.path.join(args.output_folder, f"{args.save_name}.json")): data_path = os.path.join(args.output_folder, f"{args.save_name}.json") print( f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}." ) else: data_path = args.OCRBench_file with open(data_path, "r", encoding="utf-8") as f: data = json.load(f) data_list = split_list(data, args.num_workers) output_queue = Manager().Queue() pool = Pool(processes=args.num_workers) for i in range(len(data_list)): # pool.apply(eval_worker, args=(args, data_list[i], i, output_queue)) pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue)) pool.close() pool.join() results = {} while not output_queue.empty(): result = output_queue.get() results.update(result) data = [] for i in range(len(data_list)): data.extend(results[i]) for i in range(len(data)): data_type = data[i]["type"] dataset_name = data[i]["dataset_name"] answers = data[i]["answers"] if data[i].get("predict", 0) == 0: continue predict = data[i]["predict"] data[i]["result"] = 0 if dataset_name == "HME100k": if type(answers) == list: for j in range(len(answers)): answer = answers[j].strip().replace("\n", " ").replace(" ", "") predict = predict.strip().replace("\n", " ").replace(" ", "") if answer in predict: data[i]["result"] = 1 else: answers = answers.strip().replace("\n", " ").replace(" ", "") predict = predict.strip().replace("\n", " ").replace(" ", "") if answers in predict: data[i]["result"] = 1 else: if type(answers) == list: for j in range(len(answers)): answer = answers[j].lower().strip().replace("\n", " ") predict = predict.lower().strip().replace("\n", " ") if answer in predict: data[i]["result"] = 1 else: answers = answers.lower().strip().replace("\n", " ") predict = predict.lower().strip().replace("\n", " ") if answers in predict: data[i]["result"] = 1 save_json(data, os.path.join(args.output_folder, f"{args.save_name}.json")) if len(data) == 1000: for i in range(len(data)): if data[i].get("result", 100) == 100: continue OCRBench_score[data[i]["type"]] += data[i]["result"] recognition_score = ( OCRBench_score["Regular Text Recognition"] + OCRBench_score["Irregular Text Recognition"] + OCRBench_score["Artistic Text Recognition"] + OCRBench_score["Handwriting Recognition"] + OCRBench_score["Digit String Recognition"] + OCRBench_score["Non-Semantic Text Recognition"] ) Final_score = ( recognition_score + OCRBench_score["Scene Text-centric VQA"] + OCRBench_score["Doc-oriented VQA"] + OCRBench_score["Key Information Extraction"] + OCRBench_score["Handwritten Mathematical Expression Recognition"] ) print("###########################OCRBench##############################") print(f"Text Recognition(Total 300):{recognition_score}") print("------------------Details of Recognition Score-------------------") print( f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}" ) print( f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}" ) print( f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}" ) print( f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}" ) print( f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}" ) print( f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}" ) print("----------------------------------------------------------------") print( f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}" ) print("----------------------------------------------------------------") print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}") print("----------------------------------------------------------------") print( f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}" ) print("----------------------------------------------------------------") print( f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}" ) print("----------------------Final Score-------------------------------") print(f"Final Score(Total 1000): {Final_score}") else: for i in range(len(data)): num_all[data[i]["dataset_name"]] += 1 if data[i].get("result", 100) == 100: continue AllDataset_score[data[i]["dataset_name"]] += data[i]["result"] for key in AllDataset_score.keys(): print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")