Add files via upload

This commit is contained in:
lz
2023-05-17 03:38:36 +08:00
committed by GitHub
parent eb33084cb5
commit da758a9ca7
32 changed files with 145202 additions and 0 deletions

View File

View File

@@ -0,0 +1,154 @@
# coding=utf-8
# Copyright 2023 Alibaba Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto import CONFIG_MAPPING
from transformers.models.auto.modeling_auto import \
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.utils import logging
logger = logging.get_logger(__name__)
class mPLUG_OwlVisualAbstractorConfig(PretrainedConfig):
model_type = "mPLUG_OwlVisualAbstractor"
def __init__(
self,
vocab_size=30522,
hidden_size=1024,
num_hidden_layers=6,
num_attention_heads=8,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-5,
pad_token_id=0,
position_embedding_type="absolute",
classifier_dropout=None,
cross_attention_frequency=2,
encoder_hidden_size=1024,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.classifier_dropout = classifier_dropout
self.cross_attention_frequency = cross_attention_frequency
self.encoder_hidden_size = encoder_hidden_size
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs)
if config_dict.get("model_type") == "mplug_owl":
config_dict = config_dict["abstractor_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class mPLUG_OwlConfig(PretrainedConfig):
model_type = "mplug_owl"
is_composition = True
def __init__(self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs):
super().__init__(**kwargs)
from clip.configuration_clip import CLIPVisionConfig
if vision_config is None:
# By defalt we use openai-clip large patch14
vision_config = CLIPVisionConfig(
**vision_config_dict, layer_norm_eps=1e-6).to_dict()
logger.info(
"vision_config is None.")
if visual_abstractor_config is None:
visual_abstractor_config = {}
logger.info(
"abstractor_config is None. ")
if text_config is None:
# we use LLAMA 7b by default
from transformers.models.llama.configuration_llama import \
LlamaConfig
text_config = LlamaConfig(pad_token_id=2).to_dict()
logger.info("text_config is None.")
self.vision_config = CLIPVisionConfig(**vision_config)
self.visual_abstractor_config = mPLUG_OwlVisualAbstractorConfig(
**visual_abstractor_config)
self.visual_abstractor_config.layer_norm_eps = 1e-6
text_model_type = text_config["model_type"] if "model_type" in text_config else "opt"
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
self.tie_word_embeddings = self.text_config.tie_word_embeddings
self.is_encoder_decoder = self.text_config.is_encoder_decoder
self.num_query_tokens = num_query_tokens
self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
self.initializer_factor = 1.0
self.initializer_range = 0.02
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["vision_config"] = self.vision_config.to_dict()
output["abstractor_config"] = self.visual_abstractor_config.to_dict()
output["text_config"] = self.text_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
vision_config_dict = {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 8,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,171 @@
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization utilities."""
import re
import torch
from icecream import ic
def detokenize_generations(tokens_gpu_tensor,
lengths_gpu_tensor,
return_segments, tokenizer):
"""Detokenize the generated tokens."""
prompts_plus_generations = []
if return_segments:
prompts_plus_generations_segments = []
tokens = tokens_gpu_tensor.cpu().numpy().tolist()
lengths = lengths_gpu_tensor.cpu().numpy().tolist()
for sequence_tokens, length in zip(tokens, lengths):
sequence_tokens = sequence_tokens[:length]
prompts_plus_generations.append(
tokenizer.detokenize(sequence_tokens))
if return_segments:
from tokenizers.decoders import Metaspace
if hasattr(tokenizer, 'tokenizer'):
if isinstance(tokenizer.tokenizer.decoder, Metaspace):
words = tokenizer.tokenizer.decode(sequence_tokens)
else:
words = []
for token in sequence_tokens:
word = tokenizer.tokenizer.decoder[token]
word = bytearray(
[tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
'utf-8', errors='replace')
words.append(word)
prompts_plus_generations_segments.append(words)
else:
words = tokenizer.detokenize(sequence_tokens)
# else:
# words = []
# for token in sequence_tokens:
# word = tokenizer.tokenizer.decoder[token]
# word = bytearray(
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
# 'utf-8', errors='replace')
# words.append(word)
prompts_plus_generations_segments.append(words)
if return_segments:
return tokens, prompts_plus_generations, \
prompts_plus_generations_segments
return tokens, prompts_plus_generations
def tokenize_prompts(prompts=None, tokens_to_generate=None,
add_BOS=None, rank=0, tokenizer=None, ignore_dist=False):
"""Tokenize prompts and make them avaiable on all ranks."""
# On all ranks set to None so we can pass them to functions
sizes_list = None
prompts_tokens_cuda_long_tensor = None
prompts_length_cuda_long_tensor = None
# On the specified rank, build the above.
attention_mask = None
if ignore_dist or torch.distributed.get_rank() == rank:
assert prompts is not None
assert tokens_to_generate is not None
# Tensor of tokens padded and their unpadded length.
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = \
_tokenize_prompts_and_batch(
prompts, tokens_to_generate, add_BOS, tokenizer)
# We need the sizes of these tensors for the boradcast
sizes_list = [prompts_tokens_cuda_long_tensor.size(0), # Batch size
prompts_tokens_cuda_long_tensor.size(1)] # Sequence lenght
return prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer):
"""Given a set of prompts and number of tokens to generate:
- tokenize prompts
- set the sequence length to be the max of length of prompts
plus the number of tokens we would like to generate
- pad all the sequences to this length so we can convert them
into a 2D tensor.
"""
# Tokenize all the prompts.
# if add_BOS:
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt)
# for prompt in prompts]
# else:
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
prompts_tokens = [_tokenize_prompt(
prompt, tokenizer, add_BOS) for prompt in prompts]
# Now we have a list of list of tokens which each list has a different
# size. We want to extend this list to:
# - incorporate the tokens that need to be generated
# - make all the sequences equal length.
# Get the prompts length.
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
# Get the max prompts length.
max_prompt_len = max(prompts_length)
# Number of tokens in the each sample of the batch.
samples_length = max_prompt_len + tokens_to_generate
# Now update the list of list to be of the same size: samples_length.
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
padding_size = samples_length - prompt_length
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size)
# Now we are in a structured format, we can convert to tensors.
prompts_tokens_tensor = torch.LongTensor(prompts_tokens)
prompts_length_tensor = torch.LongTensor(prompts_length)
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2])
for i, l in enumerate(prompts_length_tensor):
attention_mask[i, :l] = 1
return prompts_tokens_tensor, prompts_length_tensor, attention_mask
def _tokenize_prompt(prompt, tokenizer, add_BOS=False, media_info={'<image>': 65}):
media_tokens = {k: -int(i+1) for i, k in enumerate(media_info.keys())}
media_lengths = media_info.copy()
if add_BOS:
prompt_chunk = [tokenizer.bos_token_id]
else:
prompt_chunk = []
# Pure Text
if all([media_token not in prompt for media_token in media_tokens.keys()]):
enc_chunk = prompt_chunk + \
tokenizer(prompt, add_special_tokens=False)['input_ids']
# Multi-Modal Text
else:
enc_chunk = prompt_chunk
pattern = '|'.join(map(re.escape, list(media_tokens.keys())))
chunk_strs = re.split(f'({pattern})', prompt)
chunk_strs = [x for x in chunk_strs if len(x) > 0]
for idx, chunk_str in enumerate(chunk_strs):
if chunk_str in media_tokens:
enc_chunk += [media_tokens[chunk_str]] * \
media_lengths[chunk_str]
else:
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)[
'input_ids']
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos
# tmp_chunk += [tokenizer.eod_id]
enc_chunk += tmp_chunk
return enc_chunk