Add files via upload

This commit is contained in:
lz
2023-05-17 03:38:36 +08:00
committed by GitHub
parent eb33084cb5
commit da758a9ca7
32 changed files with 145202 additions and 0 deletions

21
models/BLIP2/BLIP2.py Normal file
View File

@@ -0,0 +1,21 @@
from transformers import Blip2Processor, Blip2ForConditionalGeneration
import torch
from PIL import Image
from ..process import pad_image
#There are some issues with the Hugging Face version of the BLIP2-opt model.
class BLIP2:
def __init__(self, model_path, device = "cuda") -> None:
self.processor = Blip2Processor.from_pretrained(model_path)
self.model = Blip2ForConditionalGeneration.from_pretrained(
model_path, torch_dtype=torch.float16).to(device)
self.model.eval()
self.device = device
def generate(self, image, question, pad=True):
prompt =f'Question: {question} Answer:'
image = Image.open(image)
if pad:
image = pad_image(image, (224,224))
inputs = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device, torch.float16)
generated_ids = self.model.generate(**inputs)
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip()
return generated_text

Binary file not shown.

47
models/LLaVA/LLaVA.py Normal file
View File

@@ -0,0 +1,47 @@
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
import torch
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
def disable_torch_init():
"""
Disable the redundant torch default initialization to accelerate model creation.
"""
setattr(torch.nn.Linear, "reset_parameters", lambda self: None)
setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None)
def patch_config(config):
patch_dict = {
"use_mm_proj": True,
"mm_vision_tower": "openai/clip-vit-large-patch14",
"mm_hidden_size": 1024
}
cfg = AutoConfig.from_pretrained(config)
if not hasattr(cfg, "mm_vision_tower"):
print(f'`mm_vision_tower` not found in `{config}`, applying patch and save to disk.')
for k, v in patch_dict.items():
setattr(cfg, k, v)
cfg.save_pretrained(config)
class LLaVA:
def __init__(self, model_path) -> None:
tokenizer = AutoTokenizer.from_pretrained(model_path)
patch_config(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16).cuda()
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
vision_tower = model.model.vision_tower[0]
vision_tower.to(device='cuda', dtype=torch.float16)
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end:
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
def generate(self, image, question):

Binary file not shown.

Binary file not shown.

20
models/lavis/lavis.py Normal file
View File

@@ -0,0 +1,20 @@
import torch
from PIL import Image
from lavis.models import load_model_and_preprocess
from ..process import pad_image
class lavis:
def __init__(self, model_name, model_type, device) -> None:
model, vis_processors, txt_processors = load_model_and_preprocess(name = model_name, model_type = model_type, is_eval=True, device=device)
self.model = model
self.vis_processors = vis_processors
self.txt_processors = txt_processors
self.device = device
def generate(self, image, question, pad=True):
prompt = f'Question: {question} Short answer:'
image = Image.open(image).convert("RGB")
if pad:
image = pad_image(image, (224,224))
image = self.vis_processors["eval"](image).unsqueeze(0).to(self.device)
prompt = self.txt_processors["eval"](prompt)
answer = self.model.predict_answers(samples={"image": image, "text_input": prompt}, inference_method="generate", max_len=32)[0]
return answer

View File

View File

@@ -0,0 +1,454 @@
# coding=utf-8
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" CLIP model configuration"""
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
if TYPE_CHECKING:
from transformers.processing_utils import ProcessorMixin
from transformers.utils import TensorType
from transformers.configuration_utils import PretrainedConfig
from transformers.onnx import OnnxConfig
from transformers.utils import logging
logger = logging.get_logger(__name__)
CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"openai/clip-vit-base-patch32": "https://huggingface.co/openai/clip-vit-base-patch32/resolve/main/config.json",
# See all CLIP models at https://huggingface.co/models?filter=clip
}
class CLIPTextConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
with the defaults will yield a similar configuration to that of the text encoder of the CLIP
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vocab_size (`int`, *optional*, defaults to 49408):
Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
the `inputs_ids` passed when calling [`CLIPModel`].
hidden_size (`int`, *optional*, defaults to 512):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 2048):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 8):
Number of attention heads for each attention layer in the Transformer encoder.
max_position_embeddings (`int`, *optional*, defaults to 77):
The maximum sequence length that this model might ever be used with. Typically set this to something large
just in case (e.g., 512 or 1024 or 2048).
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import CLIPTextConfig, CLIPTextModel
>>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPTextConfig()
>>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPTextModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clip_text_model"
def __init__(
self,
vocab_size=49408,
hidden_size=512,
intermediate_size=2048,
projection_dim=512,
num_hidden_layers=12,
num_attention_heads=8,
max_position_embeddings=77,
hidden_act="quick_gelu",
layer_norm_eps=1e-6,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
pad_token_id=1,
bos_token_id=0,
eos_token_id=2,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the text config dict if we are loading from CLIPConfig
if config_dict.get("model_type") == "clip":
config_dict = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class CLIPVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
Example:
```python
>>> from transformers import CLIPVisionConfig, CLIPVisionModel
>>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPVisionConfig()
>>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPVisionModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
```"""
model_type = "clip_vision_model"
def __init__(
self,
hidden_size=768,
intermediate_size=3072,
projection_dim=512,
num_hidden_layers=12,
num_attention_heads=12,
num_channels=3,
image_size=224,
patch_size=32,
hidden_act="quick_gelu",
layer_norm_eps=1e-5,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from CLIPConfig
if config_dict.get("model_type") == "clip":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class CLIPConfig(PretrainedConfig):
r"""
[`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
a configuration with the defaults will yield a similar configuration to that of the CLIP
[openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPTextConfig`].
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
projection_dim (`int`, *optional*, defaults to 512):
Dimentionality of text and vision projection layers.
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import CLIPConfig, CLIPModel
>>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
>>> configuration = CLIPConfig()
>>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
>>> model = CLIPModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
>>> from transformers import CLIPTextConfig, CLIPVisionConfig
>>> # Initializing a CLIPText and CLIPVision configuration
>>> config_text = CLIPTextConfig()
>>> config_vision = CLIPVisionConfig()
>>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
```"""
model_type = "clip"
is_composition = True
def __init__(
self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
):
# If `_config_dict` exist, we use them for the backward compatibility.
# We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
# of confusion!).
text_config_dict = kwargs.pop("text_config_dict", None)
vision_config_dict = kwargs.pop("vision_config_dict", None)
super().__init__(**kwargs)
# Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
# `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
# cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
if text_config_dict is not None:
if text_config is None:
text_config = {}
# This is the complete result when using `text_config_dict`.
_text_config_dict = CLIPTextConfig(**text_config_dict).to_dict()
# Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
for key, value in _text_config_dict.items():
if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
# If specified in `text_config_dict`
if key in text_config_dict:
message = (
f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
f'The value `text_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
f'value `text_config["{key}"]` will be overriden.'
)
logger.warning(message)
# Update all values in `text_config` with the ones in `_text_config_dict`.
text_config.update(_text_config_dict)
if vision_config_dict is not None:
if vision_config is None:
vision_config = {}
# This is the complete result when using `vision_config_dict`.
_vision_config_dict = CLIPVisionConfig(**vision_config_dict).to_dict()
# convert keys to string instead of integer
if "id2label" in _vision_config_dict:
_vision_config_dict["id2label"] = {
str(key): value for key, value in _vision_config_dict["id2label"].items()
}
# Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
for key, value in _vision_config_dict.items():
if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
# If specified in `vision_config_dict`
if key in vision_config_dict:
message = (
f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
f'values. The value `vision_config_dict["{key}"]` will be used instead.'
)
# If inferred from default argument values (just to be super careful)
else:
message = (
f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
f'The value `vision_config["{key}"]` will be overriden.'
)
logger.warning(message)
# Update all values in `vision_config` with the ones in `_vision_config_dict`.
vision_config.update(_vision_config_dict)
if text_config is None:
text_config = {}
logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.")
if vision_config is None:
vision_config = {}
logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.")
self.text_config = CLIPTextConfig(**text_config)
self.vision_config = CLIPVisionConfig(**vision_config)
self.projection_dim = projection_dim
self.logit_scale_init_value = logit_scale_init_value
self.initializer_factor = 1.0
@classmethod
def from_text_vision_configs(cls, text_config: CLIPTextConfig, vision_config: CLIPVisionConfig, **kwargs):
r"""
Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
configuration.
Returns:
[`CLIPConfig`]: An instance of a configuration object
"""
return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["text_config"] = self.text_config.to_dict()
output["vision_config"] = self.vision_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
class CLIPOnnxConfig(OnnxConfig):
@property
def inputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
]
)
@property
def outputs(self) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
]
)
@property
def atol_for_validation(self) -> float:
return 1e-4
def generate_dummy_inputs(
self,
processor: "ProcessorMixin",
batch_size: int = -1,
seq_length: int = -1,
framework: Optional["TensorType"] = None,
) -> Mapping[str, Any]:
text_input_dict = super().generate_dummy_inputs(
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
)
image_input_dict = super().generate_dummy_inputs(
processor.feature_extractor, batch_size=batch_size, framework=framework
)
return {**text_input_dict, **image_input_dict}
@property
def default_onnx_opset(self) -> int:
return 14

File diff suppressed because it is too large Load Diff

44
models/mPLUG_owl/mPLUG.py Normal file
View File

@@ -0,0 +1,44 @@
import argparse
import json
import torch
from transformers.models.llama.configuration_llama import LlamaConfig
from mplug_owl.configuration_mplug_owl import mPLUG_OwlConfig
from mplug_owl.modeling_mplug_owl import mPLUG_OwlForConditionalGeneration
from transformers.models.llama.tokenization_llama import LlamaTokenizer
from mplug_owl.modeling_mplug_owl import ImageProcessor
from mplug_owl.tokenize_utils import tokenize_prompts
class mPLUG:
def __init__(self, checkpoint_path=None, tokenizer_path=None) -> None:
config = mPLUG_OwlConfig()
self.model = mPLUG_OwlForConditionalGeneration(config=config).to(torch.bfloat16)
self.model.eval()
if checkpoint_path is not None:
tmp_ckpt = torch.load(
checkpoint_path, map_location='cpu')
msg = self.model.load_state_dict(tmp_ckpt, strict=False)
print(msg)
assert tokenizer_path is not None
self.tokenizer = LlamaTokenizer(
tokenizer_path, pad_token='<unk>', add_bos_token=False)
self.img_processor = ImageProcessor()
def generate(self, image, question, max_length=512, top_k=1, do_sample=True, **generate_kwargs):
prompts = [
f'''The following is a conversation between a curious human and AI assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
Human: <image>
Human: {question}
AI: ''']
tokens_to_generate = 0
add_BOS = True
context_tokens_tensor, context_length_tensorm, attention_mask = tokenize_prompts(
prompts=prompts, tokens_to_generate=tokens_to_generate, add_BOS=add_BOS, tokenizer=self.tokenizer, ignore_dist=True)
images = self.img_processor(image).to(torch.bfloat16).cuda()
context_tokens_tensor = context_tokens_tensor.cuda()
self.model.eval()
with torch.no_grad():
res = self.model.generate(input_ids=context_tokens_tensor, pixel_values=images,
attention_mask=attention_mask, max_lengt=max_length,top_k=top_k,do_sample=do_sample,**generate_kwargs)
sentence = self.tokenizer.decode(res.tolist()[0], skip_special_tokens=True)
return sentence

View File

View File

@@ -0,0 +1,154 @@
# coding=utf-8
# Copyright 2023 Alibaba Inc. and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto import CONFIG_MAPPING
from transformers.models.auto.modeling_auto import \
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.utils import logging
logger = logging.get_logger(__name__)
class mPLUG_OwlVisualAbstractorConfig(PretrainedConfig):
model_type = "mPLUG_OwlVisualAbstractor"
def __init__(
self,
vocab_size=30522,
hidden_size=1024,
num_hidden_layers=6,
num_attention_heads=8,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
initializer_range=0.02,
layer_norm_eps=1e-5,
pad_token_id=0,
position_embedding_type="absolute",
classifier_dropout=None,
cross_attention_frequency=2,
encoder_hidden_size=1024,
**kwargs,
):
super().__init__(pad_token_id=pad_token_id, **kwargs)
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.position_embedding_type = position_embedding_type
self.classifier_dropout = classifier_dropout
self.cross_attention_frequency = cross_attention_frequency
self.encoder_hidden_size = encoder_hidden_size
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(
pretrained_model_name_or_path, **kwargs)
if config_dict.get("model_type") == "mplug_owl":
config_dict = config_dict["abstractor_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class mPLUG_OwlConfig(PretrainedConfig):
model_type = "mplug_owl"
is_composition = True
def __init__(self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs):
super().__init__(**kwargs)
from clip.configuration_clip import CLIPVisionConfig
if vision_config is None:
# By defalt we use openai-clip large patch14
vision_config = CLIPVisionConfig(
**vision_config_dict, layer_norm_eps=1e-6).to_dict()
logger.info(
"vision_config is None.")
if visual_abstractor_config is None:
visual_abstractor_config = {}
logger.info(
"abstractor_config is None. ")
if text_config is None:
# we use LLAMA 7b by default
from transformers.models.llama.configuration_llama import \
LlamaConfig
text_config = LlamaConfig(pad_token_id=2).to_dict()
logger.info("text_config is None.")
self.vision_config = CLIPVisionConfig(**vision_config)
self.visual_abstractor_config = mPLUG_OwlVisualAbstractorConfig(
**visual_abstractor_config)
self.visual_abstractor_config.layer_norm_eps = 1e-6
text_model_type = text_config["model_type"] if "model_type" in text_config else "opt"
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
self.tie_word_embeddings = self.text_config.tie_word_embeddings
self.is_encoder_decoder = self.text_config.is_encoder_decoder
self.num_query_tokens = num_query_tokens
self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
self.initializer_factor = 1.0
self.initializer_range = 0.02
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["vision_config"] = self.vision_config.to_dict()
output["abstractor_config"] = self.visual_abstractor_config.to_dict()
output["text_config"] = self.text_config.to_dict()
output["model_type"] = self.__class__.model_type
return output
vision_config_dict = {
"hidden_size": 1024,
"intermediate_size": 4096,
"num_attention_heads": 8,
"num_hidden_layers": 24,
"patch_size": 14,
"projection_dim": 768}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,171 @@
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization utilities."""
import re
import torch
from icecream import ic
def detokenize_generations(tokens_gpu_tensor,
lengths_gpu_tensor,
return_segments, tokenizer):
"""Detokenize the generated tokens."""
prompts_plus_generations = []
if return_segments:
prompts_plus_generations_segments = []
tokens = tokens_gpu_tensor.cpu().numpy().tolist()
lengths = lengths_gpu_tensor.cpu().numpy().tolist()
for sequence_tokens, length in zip(tokens, lengths):
sequence_tokens = sequence_tokens[:length]
prompts_plus_generations.append(
tokenizer.detokenize(sequence_tokens))
if return_segments:
from tokenizers.decoders import Metaspace
if hasattr(tokenizer, 'tokenizer'):
if isinstance(tokenizer.tokenizer.decoder, Metaspace):
words = tokenizer.tokenizer.decode(sequence_tokens)
else:
words = []
for token in sequence_tokens:
word = tokenizer.tokenizer.decoder[token]
word = bytearray(
[tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
'utf-8', errors='replace')
words.append(word)
prompts_plus_generations_segments.append(words)
else:
words = tokenizer.detokenize(sequence_tokens)
# else:
# words = []
# for token in sequence_tokens:
# word = tokenizer.tokenizer.decoder[token]
# word = bytearray(
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
# 'utf-8', errors='replace')
# words.append(word)
prompts_plus_generations_segments.append(words)
if return_segments:
return tokens, prompts_plus_generations, \
prompts_plus_generations_segments
return tokens, prompts_plus_generations
def tokenize_prompts(prompts=None, tokens_to_generate=None,
add_BOS=None, rank=0, tokenizer=None, ignore_dist=False):
"""Tokenize prompts and make them avaiable on all ranks."""
# On all ranks set to None so we can pass them to functions
sizes_list = None
prompts_tokens_cuda_long_tensor = None
prompts_length_cuda_long_tensor = None
# On the specified rank, build the above.
attention_mask = None
if ignore_dist or torch.distributed.get_rank() == rank:
assert prompts is not None
assert tokens_to_generate is not None
# Tensor of tokens padded and their unpadded length.
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = \
_tokenize_prompts_and_batch(
prompts, tokens_to_generate, add_BOS, tokenizer)
# We need the sizes of these tensors for the boradcast
sizes_list = [prompts_tokens_cuda_long_tensor.size(0), # Batch size
prompts_tokens_cuda_long_tensor.size(1)] # Sequence lenght
return prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer):
"""Given a set of prompts and number of tokens to generate:
- tokenize prompts
- set the sequence length to be the max of length of prompts
plus the number of tokens we would like to generate
- pad all the sequences to this length so we can convert them
into a 2D tensor.
"""
# Tokenize all the prompts.
# if add_BOS:
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt)
# for prompt in prompts]
# else:
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
prompts_tokens = [_tokenize_prompt(
prompt, tokenizer, add_BOS) for prompt in prompts]
# Now we have a list of list of tokens which each list has a different
# size. We want to extend this list to:
# - incorporate the tokens that need to be generated
# - make all the sequences equal length.
# Get the prompts length.
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
# Get the max prompts length.
max_prompt_len = max(prompts_length)
# Number of tokens in the each sample of the batch.
samples_length = max_prompt_len + tokens_to_generate
# Now update the list of list to be of the same size: samples_length.
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
padding_size = samples_length - prompt_length
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size)
# Now we are in a structured format, we can convert to tensors.
prompts_tokens_tensor = torch.LongTensor(prompts_tokens)
prompts_length_tensor = torch.LongTensor(prompts_length)
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2])
for i, l in enumerate(prompts_length_tensor):
attention_mask[i, :l] = 1
return prompts_tokens_tensor, prompts_length_tensor, attention_mask
def _tokenize_prompt(prompt, tokenizer, add_BOS=False, media_info={'<image>': 65}):
media_tokens = {k: -int(i+1) for i, k in enumerate(media_info.keys())}
media_lengths = media_info.copy()
if add_BOS:
prompt_chunk = [tokenizer.bos_token_id]
else:
prompt_chunk = []
# Pure Text
if all([media_token not in prompt for media_token in media_tokens.keys()]):
enc_chunk = prompt_chunk + \
tokenizer(prompt, add_special_tokens=False)['input_ids']
# Multi-Modal Text
else:
enc_chunk = prompt_chunk
pattern = '|'.join(map(re.escape, list(media_tokens.keys())))
chunk_strs = re.split(f'({pattern})', prompt)
chunk_strs = [x for x in chunk_strs if len(x) > 0]
for idx, chunk_str in enumerate(chunk_strs):
if chunk_str in media_tokens:
enc_chunk += [media_tokens[chunk_str]] * \
media_lengths[chunk_str]
else:
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)[
'input_ids']
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos
# tmp_chunk += [tokenizer.eod_id]
enc_chunk += tmp_chunk
return enc_chunk

29
models/process.py Normal file
View File

@@ -0,0 +1,29 @@
import PIL
def pad_image(image, target_size):
"""
:param image: input image
:param target_size: a tuple (num,num)
:return: new image
"""
iw, ih = image.size # 原始图像的尺寸
w, h = target_size # 目标图像的尺寸
scale = min(w / iw, h / ih) # 转换的最小比例
# 保证长或宽,至少一个符合目标图像的尺寸 0.5保证四舍五入
nw = int(iw * scale+0.5)
nh = int(ih * scale+0.5)
w += 128
h += 128
image = image.resize((nw, nh), PIL.Image.BICUBIC) # 更改图像尺寸,双立法插值效果很好
#image.show()
new_image = PIL.Image.new('RGB', (w, h), (0, 0, 0)) # 生成黑色图像
# // 为整数除法,计算图像的位置
new_image.paste(image, ((w - nw) // 2, (h - nh) // 2)) # 将图像填充为中间图像,两侧为黑色的样式
return new_image