From b90446573fe3cd3a6e3a4d8f838a9785cfc48779 Mon Sep 17 00:00:00 2001
From: echo840 <87795401+echo840@users.noreply.github.com>
Date: Tue, 12 Mar 2024 11:40:24 +0800
Subject: [PATCH] Create qwenvl.py
---
scripts/qwenvl.py | 181 ++++++++++++++++++++++++++++++++++++++++++++++
1 file changed, 181 insertions(+)
create mode 100644 scripts/qwenvl.py
diff --git a/scripts/qwenvl.py b/scripts/qwenvl.py
new file mode 100644
index 0000000..e9e6443
--- /dev/null
+++ b/scripts/qwenvl.py
@@ -0,0 +1,181 @@
+import json
+from argparse import ArgumentParser
+import torch
+import os
+import json
+from tqdm import tqdm
+from PIL import Image
+import math
+import multiprocessing
+from multiprocessing import Pool, Queue, Manager
+from transformers import AutoModelForCausalLM, AutoTokenizer
+
+# https://github.com/QwenLM/Qwen-VL/blob/master/eval_mm/evaluate_vqa.py
+def split_list(lst, n):
+ length = len(lst)
+ avg = length // n # 每份的大小
+ result = [] # 存储分割后的子列表
+ for i in range(n - 1):
+ result.append(lst[i*avg:(i+1)*avg])
+ result.append(lst[(n-1)*avg:])
+ return result
+
+def save_json(json_list,save_path):
+ with open(save_path, 'w') as file:
+ json.dump(json_list, file,indent=4)
+
+def _get_args():
+ parser = ArgumentParser()
+ parser.add_argument("--image_folder", type=str, default="./data")
+ parser.add_argument("--output_folder", type=str, default="./results")
+ parser.add_argument("--OCRBench_file", type=str, default="./OCRBench/OCRBench.json")
+ parser.add_argument("--model_path", type=str, default="./model_weights/qwenvl")
+ parser.add_argument("--save_name", type=str, default="qwenvl")
+ parser.add_argument("--num_workers", type=int, default=1)
+ args = parser.parse_args()
+ return args
+
+OCRBench_score = {"Regular Text Recognition":0,"Irregular Text Recognition":0,"Artistic Text Recognition":0,"Handwriting Recognition":0,
+"Digit String Recognition":0,"Non-Semantic Text Recognition":0,"Scene Text-centric VQA":0,"Doc-oriented VQA":0,
+"Key Information Extraction":0,"Handwritten Mathematical Expression Recognition":0}
+AllDataset_score = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
+"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
+num_all = {"IIIT5K":0,"svt":0,"IC13_857":0,"IC15_1811":0,"svtp":0,"ct80":0,"cocotext":0,"ctw":0,"totaltext":0,"HOST":0,"WOST":0,"WordArt":0,"IAM":0,"ReCTS":0,"ORAND":0,"NonSemanticText":0,"SemanticText":0,
+"STVQA":0,"textVQA":0,"ocrVQA":0,"ESTVQA":0,"ESTVQA_cn":0,"docVQA":0,"infographicVQA":0,"ChartQA":0,"ChartQA_Human":0,"FUNSD":0,"SROIE":0,"POIE":0,"HME100k":0}
+
+def eval_worker(args, data, eval_id, output_queue):
+ print(f"Process {eval_id} start.")
+ checkpoint = args.model_path
+ model = AutoModelForCausalLM.from_pretrained(
+ checkpoint, device_map=f'cuda:{eval_id}', trust_remote_code=True).eval()
+
+ tokenizer = AutoTokenizer.from_pretrained(checkpoint,
+ trust_remote_code=True)
+ tokenizer.padding_side = 'left'
+ tokenizer.pad_token_id = tokenizer.eod_id
+
+ for i in tqdm(range(len(data))):
+ img_path = os.path.join(args.image_folder, data[i]['image_path'])
+ qs = data[i]['question']
+ # query = f'
{img_path} {qs} Answer: '
+ query = f'
{img_path}{qs} Answer:'
+ input_ids = tokenizer(query, return_tensors='pt', padding='longest')
+ attention_mask = input_ids.attention_mask
+ input_ids = input_ids.input_ids
+
+ pred = model.generate(
+ input_ids=input_ids.to(f'cuda:{eval_id}'),
+ attention_mask=attention_mask.to(f'cuda:{eval_id}'),
+ do_sample=False,
+ num_beams=1,
+ max_new_tokens=100,
+ min_new_tokens=1,
+ length_penalty=1,
+ num_return_sequences=1,
+ output_hidden_states=True,
+ use_cache=True,
+ pad_token_id=tokenizer.eod_id,
+ eos_token_id=tokenizer.eod_id,
+ )
+ response = tokenizer.decode(pred[0][input_ids.size(1):].cpu(), skip_special_tokens=True).strip()
+ data[i]['predict'] = response
+ output_queue.put({eval_id: data})
+ print(f"Process {eval_id} has completed.")
+
+if __name__=="__main__":
+ multiprocessing.set_start_method('spawn')
+ args = _get_args()
+ if os.path.exists(os.path.join(args.output_folder,f"{args.save_name}.json")):
+ data_path = os.path.join(args.output_folder,f"{args.save_name}.json")
+ print(f"output_path:{data_path} exist! Only generate the results that were not generated in {data_path}.")
+ else:
+ data_path = args.OCRBench_file
+
+ with open(data_path, "r") as f:
+ data = json.load(f)
+
+ data_list = split_list(data, args.num_workers)
+
+ output_queue = Manager().Queue()
+
+ pool = Pool(processes=args.num_workers)
+ for i in range(len(data_list)):
+ pool.apply_async(eval_worker, args=(args, data_list[i], i, output_queue))
+ pool.close()
+ pool.join()
+
+ results = {}
+ while not output_queue.empty():
+ result = output_queue.get()
+ results.update(result)
+ data = []
+ for i in range(len(data_list)):
+ data.extend(results[i])
+
+ for i in range(len(data)):
+ data_type = data[i]["type"]
+ dataset_name = data[i]["dataset_name"]
+ answers = data[i]["answers"]
+ if data[i].get('predict',0)==0:
+ continue
+ predict = data[i]['predict']
+ data[i]['result'] = 0
+ if dataset_name == "HME100k":
+ if type(answers)==list:
+ for j in range(len(answers)):
+ answer = answers[j].strip().replace("\n"," ").replace(" ","")
+ predict = predict.strip().replace("\n"," ").replace(" ","")
+ if answer in predict:
+ data[i]['result'] = 1
+ else:
+ answers = answers.strip().replace("\n"," ").replace(" ","")
+ predict = predict.strip().replace("\n"," ").replace(" ","")
+ if answers in predict:
+ data[i]['result'] = 1
+ else:
+ if type(answers)==list:
+ for j in range(len(answers)):
+ answer = answers[j].lower().strip().replace("\n"," ")
+ predict = predict.lower().strip().replace("\n"," ")
+ if answer in predict:
+ data[i]['result'] = 1
+ else:
+ answers = answers.lower().strip().replace("\n"," ")
+ predict = predict.lower().strip().replace("\n"," ")
+ if answers in predict:
+ data[i]['result'] = 1
+ save_json(data, os.path.join(args.output_folder,f"{args.save_name}.json"))
+ if len(data)==1000:
+ for i in range(len(data)):
+ if data[i].get("result",100)==100:
+ continue
+ OCRBench_score[data[i]['type']] += data[i]['result']
+ recognition_score = OCRBench_score['Regular Text Recognition']+OCRBench_score['Irregular Text Recognition']+OCRBench_score['Artistic Text Recognition']+OCRBench_score['Handwriting Recognition']+OCRBench_score['Digit String Recognition']+OCRBench_score['Non-Semantic Text Recognition']
+ Final_score = recognition_score+OCRBench_score['Scene Text-centric VQA']+OCRBench_score['Doc-oriented VQA']+OCRBench_score['Key Information Extraction']+OCRBench_score['Handwritten Mathematical Expression Recognition']
+ print("###########################OCRBench##############################")
+ print(f"Text Recognition(Total 300):{recognition_score}")
+ print("------------------Details of Recognition Score-------------------")
+ print(f"Regular Text Recognition(Total 50): {OCRBench_score['Regular Text Recognition']}")
+ print(f"Irregular Text Recognition(Total 50): {OCRBench_score['Irregular Text Recognition']}")
+ print(f"Artistic Text Recognition(Total 50): {OCRBench_score['Artistic Text Recognition']}")
+ print(f"Handwriting Recognition(Total 50): {OCRBench_score['Handwriting Recognition']}")
+ print(f"Digit String Recognition(Total 50): {OCRBench_score['Digit String Recognition']}")
+ print(f"Non-Semantic Text Recognition(Total 50): {OCRBench_score['Non-Semantic Text Recognition']}")
+ print("----------------------------------------------------------------")
+ print(f"Scene Text-centric VQA(Total 200): {OCRBench_score['Scene Text-centric VQA']}")
+ print("----------------------------------------------------------------")
+ print(f"Doc-oriented VQA(Total 200): {OCRBench_score['Doc-oriented VQA']}")
+ print("----------------------------------------------------------------")
+ print(f"Key Information Extraction(Total 200): {OCRBench_score['Key Information Extraction']}")
+ print("----------------------------------------------------------------")
+ print(f"Handwritten Mathematical Expression Recognition(Total 100): {OCRBench_score['Handwritten Mathematical Expression Recognition']}")
+ print("----------------------Final Score-------------------------------")
+ print(f"Final Score(Total 1000): {Final_score}")
+ else:
+ for i in range(len(data)):
+ num_all[data[i]['dataset_name']] += 1
+ if data[i].get("result",100)==100:
+ continue
+ AllDataset_score[data[i]['dataset_name']] += data[i]['result']
+ for key in AllDataset_score.keys():
+ print(f"{key}: {AllDataset_score[key]/float(num_all[key])}")