add
This commit is contained in:
153
models/LLaVA/build/lib/llava/serve/cli.py
Normal file
153
models/LLaVA/build/lib/llava/serve/cli.py
Normal file
@@ -0,0 +1,153 @@
|
||||
"""
|
||||
Usage:
|
||||
python3 -m fastchat.serve.cli --model ~/model_weights/llama-7b
|
||||
"""
|
||||
import argparse
|
||||
import time
|
||||
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
|
||||
from llava.conversation import conv_templates, SeparatorStyle
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def generate_stream(tokenizer, model, params, device,
|
||||
context_len=2048, stream_interval=2):
|
||||
"""Adapted from fastchat/serve/model_worker.py::generate_stream"""
|
||||
|
||||
prompt = params["prompt"]
|
||||
l_prompt = len(prompt)
|
||||
temperature = float(params.get("temperature", 1.0))
|
||||
max_new_tokens = int(params.get("max_new_tokens", 256))
|
||||
stop_str = params.get("stop", None)
|
||||
|
||||
input_ids = tokenizer(prompt).input_ids
|
||||
output_ids = list(input_ids)
|
||||
|
||||
max_src_len = context_len - max_new_tokens - 8
|
||||
input_ids = input_ids[-max_src_len:]
|
||||
|
||||
for i in range(max_new_tokens):
|
||||
if i == 0:
|
||||
out = model(
|
||||
torch.as_tensor([input_ids], device=device), use_cache=True)
|
||||
logits = out.logits
|
||||
past_key_values = out.past_key_values
|
||||
else:
|
||||
attention_mask = torch.ones(
|
||||
1, past_key_values[0][0].shape[-2] + 1, device=device)
|
||||
out = model(input_ids=torch.as_tensor([[token]], device=device),
|
||||
use_cache=True,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values)
|
||||
logits = out.logits
|
||||
past_key_values = out.past_key_values
|
||||
|
||||
last_token_logits = logits[0][-1]
|
||||
if temperature < 1e-4:
|
||||
token = int(torch.argmax(last_token_logits))
|
||||
else:
|
||||
probs = torch.softmax(last_token_logits / temperature, dim=-1)
|
||||
token = int(torch.multinomial(probs, num_samples=1))
|
||||
|
||||
output_ids.append(token)
|
||||
|
||||
if token == tokenizer.eos_token_id:
|
||||
stopped = True
|
||||
else:
|
||||
stopped = False
|
||||
|
||||
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
|
||||
output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
||||
pos = output.rfind(stop_str, l_prompt)
|
||||
if pos != -1:
|
||||
output = output[:pos]
|
||||
stopped = True
|
||||
yield output
|
||||
|
||||
if stopped:
|
||||
break
|
||||
|
||||
del past_key_values
|
||||
|
||||
|
||||
def main(args):
|
||||
model_name = args.model_name
|
||||
num_gpus = args.num_gpus
|
||||
|
||||
# Model
|
||||
if args.device == "cuda":
|
||||
kwargs = {"torch_dtype": torch.float16}
|
||||
if num_gpus == "auto":
|
||||
kwargs["device_map"] = "auto"
|
||||
else:
|
||||
num_gpus = int(num_gpus)
|
||||
if num_gpus != 1:
|
||||
kwargs.update({
|
||||
"device_map": "auto",
|
||||
"max_memory": {i: "13GiB" for i in range(num_gpus)},
|
||||
})
|
||||
elif args.device == "cpu":
|
||||
kwargs = {}
|
||||
else:
|
||||
raise ValueError(f"Invalid device: {args.device}")
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name,
|
||||
low_cpu_mem_usage=True, **kwargs)
|
||||
|
||||
if args.device == "cuda" and num_gpus == 1:
|
||||
model.cuda()
|
||||
|
||||
# Chat
|
||||
conv = conv_templates[args.conv_template].copy()
|
||||
while True:
|
||||
try:
|
||||
inp = input(f"{conv.roles[0]}: ")
|
||||
except EOFError:
|
||||
inp = ""
|
||||
if not inp:
|
||||
print("exit...")
|
||||
break
|
||||
|
||||
conv.append_message(conv.roles[0], inp)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
|
||||
params = {
|
||||
"model": model_name,
|
||||
"prompt": prompt,
|
||||
"temperature": args.temperature,
|
||||
"max_new_tokens": args.max_new_tokens,
|
||||
"stop": conv.sep if conv.sep_style == SeparatorStyle.SINGLE else conv.sep2,
|
||||
}
|
||||
|
||||
print(f"{conv.roles[1]}: ", end="", flush=True)
|
||||
pre = 0
|
||||
for outputs in generate_stream(tokenizer, model, params, args.device):
|
||||
outputs = outputs[len(prompt) + 1:].strip()
|
||||
outputs = outputs.split(" ")
|
||||
now = len(outputs)
|
||||
if now - 1 > pre:
|
||||
print(" ".join(outputs[pre:now-1]), end=" ", flush=True)
|
||||
pre = now - 1
|
||||
print(" ".join(outputs[pre:]), flush=True)
|
||||
|
||||
conv.messages[-1][-1] = " ".join(outputs)
|
||||
|
||||
if args.debug:
|
||||
print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--num-gpus", type=str, default="1")
|
||||
parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda")
|
||||
parser.add_argument("--conv-template", type=str, default="v1")
|
||||
parser.add_argument("--temperature", type=float, default=0.7)
|
||||
parser.add_argument("--max-new-tokens", type=int, default=512)
|
||||
parser.add_argument("--debug", action="store_true")
|
||||
args = parser.parse_args()
|
||||
main(args)
|
Reference in New Issue
Block a user