This commit is contained in:
echo840
2023-05-23 18:24:16 +08:00
parent da758a9ca7
commit b388fba03e
470 changed files with 2523750 additions and 7307 deletions

View File

@@ -0,0 +1,153 @@
"""
Usage:
python3 -m fastchat.serve.cli --model ~/model_weights/llama-7b
"""
import argparse
import time
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
from llava.conversation import conv_templates, SeparatorStyle
@torch.inference_mode()
def generate_stream(tokenizer, model, params, device,
context_len=2048, stream_interval=2):
"""Adapted from fastchat/serve/model_worker.py::generate_stream"""
prompt = params["prompt"]
l_prompt = len(prompt)
temperature = float(params.get("temperature", 1.0))
max_new_tokens = int(params.get("max_new_tokens", 256))
stop_str = params.get("stop", None)
input_ids = tokenizer(prompt).input_ids
output_ids = list(input_ids)
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
for i in range(max_new_tokens):
if i == 0:
out = model(
torch.as_tensor([input_ids], device=device), use_cache=True)
logits = out.logits
past_key_values = out.past_key_values
else:
attention_mask = torch.ones(
1, past_key_values[0][0].shape[-2] + 1, device=device)
out = model(input_ids=torch.as_tensor([[token]], device=device),
use_cache=True,
attention_mask=attention_mask,
past_key_values=past_key_values)
logits = out.logits
past_key_values = out.past_key_values
last_token_logits = logits[0][-1]
if temperature < 1e-4:
token = int(torch.argmax(last_token_logits))
else:
probs = torch.softmax(last_token_logits / temperature, dim=-1)
token = int(torch.multinomial(probs, num_samples=1))
output_ids.append(token)
if token == tokenizer.eos_token_id:
stopped = True
else:
stopped = False
if i % stream_interval == 0 or i == max_new_tokens - 1 or stopped:
output = tokenizer.decode(output_ids, skip_special_tokens=True)
pos = output.rfind(stop_str, l_prompt)
if pos != -1:
output = output[:pos]
stopped = True
yield output
if stopped:
break
del past_key_values
def main(args):
model_name = args.model_name
num_gpus = args.num_gpus
# Model
if args.device == "cuda":
kwargs = {"torch_dtype": torch.float16}
if num_gpus == "auto":
kwargs["device_map"] = "auto"
else:
num_gpus = int(num_gpus)
if num_gpus != 1:
kwargs.update({
"device_map": "auto",
"max_memory": {i: "13GiB" for i in range(num_gpus)},
})
elif args.device == "cpu":
kwargs = {}
else:
raise ValueError(f"Invalid device: {args.device}")
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name,
low_cpu_mem_usage=True, **kwargs)
if args.device == "cuda" and num_gpus == 1:
model.cuda()
# Chat
conv = conv_templates[args.conv_template].copy()
while True:
try:
inp = input(f"{conv.roles[0]}: ")
except EOFError:
inp = ""
if not inp:
print("exit...")
break
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
params = {
"model": model_name,
"prompt": prompt,
"temperature": args.temperature,
"max_new_tokens": args.max_new_tokens,
"stop": conv.sep if conv.sep_style == SeparatorStyle.SINGLE else conv.sep2,
}
print(f"{conv.roles[1]}: ", end="", flush=True)
pre = 0
for outputs in generate_stream(tokenizer, model, params, args.device):
outputs = outputs[len(prompt) + 1:].strip()
outputs = outputs.split(" ")
now = len(outputs)
if now - 1 > pre:
print(" ".join(outputs[pre:now-1]), end=" ", flush=True)
pre = now - 1
print(" ".join(outputs[pre:]), flush=True)
conv.messages[-1][-1] = " ".join(outputs)
if args.debug:
print("\n", {"prompt": prompt, "outputs": outputs}, "\n")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--num-gpus", type=str, default="1")
parser.add_argument("--device", type=str, choices=["cuda", "cpu"], default="cuda")
parser.add_argument("--conv-template", type=str, default="v1")
parser.add_argument("--temperature", type=float, default=0.7)
parser.add_argument("--max-new-tokens", type=int, default=512)
parser.add_argument("--debug", action="store_true")
args = parser.parse_args()
main(args)

View File

@@ -0,0 +1,298 @@
"""
A controller manages distributed workers.
It sends worker addresses to clients.
"""
import argparse
import asyncio
import dataclasses
from enum import Enum, auto
import json
import logging
import time
from typing import List, Union
import threading
from fastapi import FastAPI, Request
from fastapi.responses import StreamingResponse
import numpy as np
import requests
import uvicorn
from llava.constants import CONTROLLER_HEART_BEAT_EXPIRATION
from llava.utils import build_logger, server_error_msg
logger = build_logger("controller", "controller.log")
class DispatchMethod(Enum):
LOTTERY = auto()
SHORTEST_QUEUE = auto()
@classmethod
def from_str(cls, name):
if name == "lottery":
return cls.LOTTERY
elif name == "shortest_queue":
return cls.SHORTEST_QUEUE
else:
raise ValueError(f"Invalid dispatch method")
@dataclasses.dataclass
class WorkerInfo:
model_names: List[str]
speed: int
queue_length: int
check_heart_beat: bool
last_heart_beat: str
def heart_beat_controller(controller):
while True:
time.sleep(CONTROLLER_HEART_BEAT_EXPIRATION)
controller.remove_stable_workers_by_expiration()
class Controller:
def __init__(self, dispatch_method: str):
# Dict[str -> WorkerInfo]
self.worker_info = {}
self.dispatch_method = DispatchMethod.from_str(dispatch_method)
self.heart_beat_thread = threading.Thread(
target=heart_beat_controller, args=(self,))
self.heart_beat_thread.start()
logger.info("Init controller")
def register_worker(self, worker_name: str, check_heart_beat: bool,
worker_status: dict):
if worker_name not in self.worker_info:
logger.info(f"Register a new worker: {worker_name}")
else:
logger.info(f"Register an existing worker: {worker_name}")
if not worker_status:
worker_status = self.get_worker_status(worker_name)
if not worker_status:
return False
self.worker_info[worker_name] = WorkerInfo(
worker_status["model_names"], worker_status["speed"], worker_status["queue_length"],
check_heart_beat, time.time())
logger.info(f"Register done: {worker_name}, {worker_status}")
return True
def get_worker_status(self, worker_name: str):
try:
r = requests.post(worker_name + "/worker_get_status", timeout=5)
except requests.exceptions.RequestException as e:
logger.error(f"Get status fails: {worker_name}, {e}")
return None
if r.status_code != 200:
logger.error(f"Get status fails: {worker_name}, {r}")
return None
return r.json()
def remove_worker(self, worker_name: str):
del self.worker_info[worker_name]
def refresh_all_workers(self):
old_info = dict(self.worker_info)
self.worker_info = {}
for w_name, w_info in old_info.items():
if not self.register_worker(w_name, w_info.check_heart_beat, None):
logger.info(f"Remove stale worker: {w_name}")
def list_models(self):
model_names = set()
for w_name, w_info in self.worker_info.items():
model_names.update(w_info.model_names)
return list(model_names)
def get_worker_address(self, model_name: str):
if self.dispatch_method == DispatchMethod.LOTTERY:
worker_names = []
worker_speeds = []
for w_name, w_info in self.worker_info.items():
if model_name in w_info.model_names:
worker_names.append(w_name)
worker_speeds.append(w_info.speed)
worker_speeds = np.array(worker_speeds, dtype=np.float32)
norm = np.sum(worker_speeds)
if norm < 1e-4:
return ""
worker_speeds = worker_speeds / norm
if True: # Directly return address
pt = np.random.choice(np.arange(len(worker_names)),
p=worker_speeds)
worker_name = worker_names[pt]
return worker_name
# Check status before returning
while True:
pt = np.random.choice(np.arange(len(worker_names)),
p=worker_speeds)
worker_name = worker_names[pt]
if self.get_worker_status(worker_name):
break
else:
self.remove_worker(worker_name)
worker_speeds[pt] = 0
norm = np.sum(worker_speeds)
if norm < 1e-4:
return ""
worker_speeds = worker_speeds / norm
continue
return worker_name
elif self.dispatch_method == DispatchMethod.SHORTEST_QUEUE:
worker_names = []
worker_qlen = []
for w_name, w_info in self.worker_info.items():
if model_name in w_info.model_names:
worker_names.append(w_name)
worker_qlen.append(w_info.queue_length / w_info.speed)
if len(worker_names) == 0:
return ""
min_index = np.argmin(worker_qlen)
w_name = worker_names[min_index]
self.worker_info[w_name].queue_length += 1
logger.info(f"names: {worker_names}, queue_lens: {worker_qlen}, ret: {w_name}")
return w_name
else:
raise ValueError(f"Invalid dispatch method: {self.dispatch_method}")
def receive_heart_beat(self, worker_name: str, queue_length: int):
if worker_name not in self.worker_info:
logger.info(f"Receive unknown heart beat. {worker_name}")
return False
self.worker_info[worker_name].queue_length = queue_length
self.worker_info[worker_name].last_heart_beat = time.time()
logger.info(f"Receive heart beat. {worker_name}")
return True
def remove_stable_workers_by_expiration(self):
expire = time.time() - CONTROLLER_HEART_BEAT_EXPIRATION
to_delete = []
for worker_name, w_info in self.worker_info.items():
if w_info.check_heart_beat and w_info.last_heart_beat < expire:
to_delete.append(worker_name)
for worker_name in to_delete:
self.remove_worker(worker_name)
def worker_api_generate_stream(self, params):
worker_addr = self.get_worker_address(params["model"])
if not worker_addr:
logger.info(f"no worker: {params['model']}")
ret = {
"text": server_error_msg,
"error_code": 2,
}
yield json.dumps(ret).encode() + b"\0"
try:
response = requests.post(worker_addr + "/worker_generate_stream",
json=params, stream=True, timeout=5)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
yield chunk + b"\0"
except requests.exceptions.RequestException as e:
logger.info(f"worker timeout: {worker_addr}")
ret = {
"text": server_error_msg,
"error_code": 3,
}
yield json.dumps(ret).encode() + b"\0"
# Let the controller act as a worker to achieve hierarchical
# management. This can be used to connect isolated sub networks.
def worker_api_get_status(self):
model_names = set()
speed = 0
queue_length = 0
for w_name in self.worker_info:
worker_status = self.get_worker_status(w_name)
if worker_status is not None:
model_names.update(worker_status["model_names"])
speed += worker_status["speed"]
queue_length += worker_status["queue_length"]
return {
"model_names": list(model_names),
"speed": speed,
"queue_length": queue_length,
}
app = FastAPI()
@app.post("/register_worker")
async def register_worker(request: Request):
data = await request.json()
controller.register_worker(
data["worker_name"], data["check_heart_beat"],
data.get("worker_status", None))
@app.post("/refresh_all_workers")
async def refresh_all_workers():
models = controller.refresh_all_workers()
@app.post("/list_models")
async def list_models():
models = controller.list_models()
return {"models": models}
@app.post("/get_worker_address")
async def get_worker_address(request: Request):
data = await request.json()
addr = controller.get_worker_address(data["model"])
return {"address": addr}
@app.post("/receive_heart_beat")
async def receive_heart_beat(request: Request):
data = await request.json()
exist = controller.receive_heart_beat(
data["worker_name"], data["queue_length"])
return {"exist": exist}
@app.post("/worker_generate_stream")
async def worker_api_generate_stream(request: Request):
params = await request.json()
generator = controller.worker_api_generate_stream(params)
return StreamingResponse(generator)
@app.post("/worker_get_status")
async def worker_api_get_status(request: Request):
return controller.worker_api_get_status()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21001)
parser.add_argument("--dispatch-method", type=str, choices=[
"lottery", "shortest_queue"], default="shortest_queue")
args = parser.parse_args()
logger.info(f"args: {args}")
controller = Controller(args.dispatch_method)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")

View File

@@ -0,0 +1,73 @@
code_highlight_css = (
"""
#chatbot .hll { background-color: #ffffcc }
#chatbot .c { color: #408080; font-style: italic }
#chatbot .err { border: 1px solid #FF0000 }
#chatbot .k { color: #008000; font-weight: bold }
#chatbot .o { color: #666666 }
#chatbot .ch { color: #408080; font-style: italic }
#chatbot .cm { color: #408080; font-style: italic }
#chatbot .cp { color: #BC7A00 }
#chatbot .cpf { color: #408080; font-style: italic }
#chatbot .c1 { color: #408080; font-style: italic }
#chatbot .cs { color: #408080; font-style: italic }
#chatbot .gd { color: #A00000 }
#chatbot .ge { font-style: italic }
#chatbot .gr { color: #FF0000 }
#chatbot .gh { color: #000080; font-weight: bold }
#chatbot .gi { color: #00A000 }
#chatbot .go { color: #888888 }
#chatbot .gp { color: #000080; font-weight: bold }
#chatbot .gs { font-weight: bold }
#chatbot .gu { color: #800080; font-weight: bold }
#chatbot .gt { color: #0044DD }
#chatbot .kc { color: #008000; font-weight: bold }
#chatbot .kd { color: #008000; font-weight: bold }
#chatbot .kn { color: #008000; font-weight: bold }
#chatbot .kp { color: #008000 }
#chatbot .kr { color: #008000; font-weight: bold }
#chatbot .kt { color: #B00040 }
#chatbot .m { color: #666666 }
#chatbot .s { color: #BA2121 }
#chatbot .na { color: #7D9029 }
#chatbot .nb { color: #008000 }
#chatbot .nc { color: #0000FF; font-weight: bold }
#chatbot .no { color: #880000 }
#chatbot .nd { color: #AA22FF }
#chatbot .ni { color: #999999; font-weight: bold }
#chatbot .ne { color: #D2413A; font-weight: bold }
#chatbot .nf { color: #0000FF }
#chatbot .nl { color: #A0A000 }
#chatbot .nn { color: #0000FF; font-weight: bold }
#chatbot .nt { color: #008000; font-weight: bold }
#chatbot .nv { color: #19177C }
#chatbot .ow { color: #AA22FF; font-weight: bold }
#chatbot .w { color: #bbbbbb }
#chatbot .mb { color: #666666 }
#chatbot .mf { color: #666666 }
#chatbot .mh { color: #666666 }
#chatbot .mi { color: #666666 }
#chatbot .mo { color: #666666 }
#chatbot .sa { color: #BA2121 }
#chatbot .sb { color: #BA2121 }
#chatbot .sc { color: #BA2121 }
#chatbot .dl { color: #BA2121 }
#chatbot .sd { color: #BA2121; font-style: italic }
#chatbot .s2 { color: #BA2121 }
#chatbot .se { color: #BB6622; font-weight: bold }
#chatbot .sh { color: #BA2121 }
#chatbot .si { color: #BB6688; font-weight: bold }
#chatbot .sx { color: #008000 }
#chatbot .sr { color: #BB6688 }
#chatbot .s1 { color: #BA2121 }
#chatbot .ss { color: #19177C }
#chatbot .bp { color: #008000 }
#chatbot .fm { color: #0000FF }
#chatbot .vc { color: #19177C }
#chatbot .vg { color: #19177C }
#chatbot .vi { color: #19177C }
#chatbot .vm { color: #19177C }
#chatbot .il { color: #666666 }
""")
#.highlight { background: #f8f8f8; }

View File

@@ -0,0 +1,168 @@
"""
Adopted from https://github.com/gradio-app/gradio/blob/main/gradio/components.py
Fix a markdown render problem.
"""
from __future__ import annotations
from gradio.components import *
from markdown2 import Markdown
class _Keywords(Enum):
NO_VALUE = "NO_VALUE" # Used as a sentinel to determine if nothing is provided as a argument for `value` in `Component.update()`
FINISHED_ITERATING = "FINISHED_ITERATING" # Used to skip processing of a component's value (needed for generators + state)
@document("style")
class Chatbot(Changeable, Selectable, IOComponent, JSONSerializable):
"""
Displays a chatbot output showing both user submitted messages and responses. Supports a subset of Markdown including bold, italics, code, and images.
Preprocessing: this component does *not* accept input.
Postprocessing: expects function to return a {List[Tuple[str | None | Tuple, str | None | Tuple]]}, a list of tuples with user message and response messages. Messages should be strings, tuples, or Nones. If the message is a string, it can include Markdown. If it is a tuple, it should consist of (string filepath to image/video/audio, [optional string alt text]). Messages that are `None` are not displayed.
Demos: chatbot_simple, chatbot_multimodal
"""
def __init__(
self,
value: List[Tuple[str | None, str | None]] | Callable | None = None,
color_map: Dict[str, str] | None = None, # Parameter moved to Chatbot.style()
*,
label: str | None = None,
every: float | None = None,
show_label: bool = True,
visible: bool = True,
elem_id: str | None = None,
elem_classes: List[str] | str | None = None,
**kwargs,
):
"""
Parameters:
value: Default value to show in chatbot. If callable, the function will be called whenever the app loads to set the initial value of the component.
label: component name in interface.
every: If `value` is a callable, run the function 'every' number of seconds while the client connection is open. Has no effect otherwise. Queue must be enabled. The event can be accessed (e.g. to cancel it) via this component's .load_event attribute.
show_label: if True, will display label.
visible: If False, component will be hidden.
elem_id: An optional string that is assigned as the id of this component in the HTML DOM. Can be used for targeting CSS styles.
elem_classes: An optional list of strings that are assigned as the classes of this component in the HTML DOM. Can be used for targeting CSS styles.
"""
if color_map is not None:
warnings.warn(
"The 'color_map' parameter has been deprecated.",
)
#self.md = utils.get_markdown_parser()
self.md = Markdown(extras=["fenced-code-blocks", "tables", "break-on-newline"])
self.select: EventListenerMethod
"""
Event listener for when the user selects message from Chatbot.
Uses event data gradio.SelectData to carry `value` referring to text of selected message, and `index` tuple to refer to [message, participant] index.
See EventData documentation on how to use this event data.
"""
IOComponent.__init__(
self,
label=label,
every=every,
show_label=show_label,
visible=visible,
elem_id=elem_id,
elem_classes=elem_classes,
value=value,
**kwargs,
)
def get_config(self):
return {
"value": self.value,
"selectable": self.selectable,
**IOComponent.get_config(self),
}
@staticmethod
def update(
value: Any | Literal[_Keywords.NO_VALUE] | None = _Keywords.NO_VALUE,
label: str | None = None,
show_label: bool | None = None,
visible: bool | None = None,
):
updated_config = {
"label": label,
"show_label": show_label,
"visible": visible,
"value": value,
"__type__": "update",
}
return updated_config
def _process_chat_messages(
self, chat_message: str | Tuple | List | Dict | None
) -> str | Dict | None:
if chat_message is None:
return None
elif isinstance(chat_message, (tuple, list)):
mime_type = processing_utils.get_mimetype(chat_message[0])
return {
"name": chat_message[0],
"mime_type": mime_type,
"alt_text": chat_message[1] if len(chat_message) > 1 else None,
"data": None, # These last two fields are filled in by the frontend
"is_file": True,
}
elif isinstance(
chat_message, dict
): # This happens for previously processed messages
return chat_message
elif isinstance(chat_message, str):
#return self.md.render(chat_message)
return str(self.md.convert(chat_message))
else:
raise ValueError(f"Invalid message for Chatbot component: {chat_message}")
def postprocess(
self,
y: List[
Tuple[str | Tuple | List | Dict | None, str | Tuple | List | Dict | None]
],
) -> List[Tuple[str | Dict | None, str | Dict | None]]:
"""
Parameters:
y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format. It can also be a tuple whose first element is a string filepath or URL to an image/video/audio, and second (optional) element is the alt text, in which case the media file is displayed. It can also be None, in which case that message is not displayed.
Returns:
List of tuples representing the message and response. Each message and response will be a string of HTML, or a dictionary with media information.
"""
if y is None:
return []
processed_messages = []
for message_pair in y:
assert isinstance(
message_pair, (tuple, list)
), f"Expected a list of lists or list of tuples. Received: {message_pair}"
assert (
len(message_pair) == 2
), f"Expected a list of lists of length 2 or list of tuples of length 2. Received: {message_pair}"
processed_messages.append(
(
#self._process_chat_messages(message_pair[0]),
'<pre style="font-family: var(--font)">' +
message_pair[0] + "</pre>",
self._process_chat_messages(message_pair[1]),
)
)
return processed_messages
def style(self, height: int | None = None, **kwargs):
"""
This method can be used to change the appearance of the Chatbot component.
"""
if height is not None:
self._style["height"] = height
if kwargs.get("color_map") is not None:
warnings.warn("The 'color_map' parameter has been deprecated.")
Component.style(
self,
**kwargs,
)
return self

View File

@@ -0,0 +1,431 @@
import argparse
from collections import defaultdict
import datetime
import json
import os
import time
import gradio as gr
import requests
from llava.conversation import (default_conversation, conv_templates,
SeparatorStyle)
from llava.constants import LOGDIR
from llava.utils import (build_logger, server_error_msg,
violates_moderation, moderation_msg)
from llava.serve.gradio_patch import Chatbot as grChatbot
from llava.serve.gradio_css import code_highlight_css
import hashlib
logger = build_logger("gradio_web_server", "gradio_web_server.log")
headers = {"User-Agent": "LLaVA Client"}
no_change_btn = gr.Button.update()
enable_btn = gr.Button.update(interactive=True)
disable_btn = gr.Button.update(interactive=False)
priority = {
"vicuna-13b": "aaaaaaa",
"koala-13b": "aaaaaab",
}
def get_conv_log_filename():
t = datetime.datetime.now()
name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json")
return name
def get_model_list():
ret = requests.post(args.controller_url + "/refresh_all_workers")
assert ret.status_code == 200
ret = requests.post(args.controller_url + "/list_models")
models = ret.json()["models"]
models.sort(key=lambda x: priority.get(x, x))
logger.info(f"Models: {models}")
return models
get_window_url_params = """
function() {
const params = new URLSearchParams(window.location.search);
url_params = Object.fromEntries(params);
console.log(url_params);
return url_params;
}
"""
def load_demo(url_params, request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
dropdown_update = gr.Dropdown.update(visible=True)
if "model" in url_params:
model = url_params["model"]
if model in models:
dropdown_update = gr.Dropdown.update(
value=model, visible=True)
state = default_conversation.copy()
return (state,
dropdown_update,
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Row.update(visible=True),
gr.Accordion.update(visible=True))
def load_demo_refresh_model_list(request: gr.Request):
logger.info(f"load_demo. ip: {request.client.host}")
models = get_model_list()
state = default_conversation.copy()
return (state, gr.Dropdown.update(
choices=models,
value=models[0] if len(models) > 0 else ""),
gr.Chatbot.update(visible=True),
gr.Textbox.update(visible=True),
gr.Button.update(visible=True),
gr.Row.update(visible=True),
gr.Accordion.update(visible=True))
def vote_last_response(state, vote_type, model_selector, request: gr.Request):
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(time.time(), 4),
"type": vote_type,
"model": model_selector,
"state": state.dict(),
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
def upvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"upvote. ip: {request.client.host}")
vote_last_response(state, "upvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def downvote_last_response(state, model_selector, request: gr.Request):
logger.info(f"downvote. ip: {request.client.host}")
vote_last_response(state, "downvote", model_selector, request)
return ("",) + (disable_btn,) * 3
def flag_last_response(state, model_selector, request: gr.Request):
logger.info(f"flag. ip: {request.client.host}")
vote_last_response(state, "flag", model_selector, request)
return ("",) + (disable_btn,) * 3
def regenerate(state, image_process_mode, request: gr.Request):
logger.info(f"regenerate. ip: {request.client.host}")
state.messages[-1][-1] = None
prev_human_msg = state.messages[-2]
if type(prev_human_msg[1]) in (tuple, list):
prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def clear_history(request: gr.Request):
logger.info(f"clear_history. ip: {request.client.host}")
state = default_conversation.copy()
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def add_text(state, text, image, image_process_mode, request: gr.Request):
logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}")
if len(text) <= 0 and image is None:
state.skip_next = True
return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5
if args.moderate:
flagged = violates_moderation(text)
if flagged:
state.skip_next = True
return (state, state.to_gradio_chatbot(), moderation_msg, None) + (
no_change_btn,) * 5
text = text[:1536] # Hard cut-off
if image is not None:
text = text[:1200] # Hard cut-off for images
if '<image>' not in text:
text = text + '\n<image>'
text = (text, image, image_process_mode)
state = default_conversation.copy()
state.append_message(state.roles[0], text)
state.append_message(state.roles[1], None)
state.skip_next = False
return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5
def post_process_code(code):
sep = "\n```"
if sep in code:
blocks = code.split(sep)
if len(blocks) % 2 == 1:
for i in range(1, len(blocks), 2):
blocks[i] = blocks[i].replace("\\_", "_")
code = sep.join(blocks)
return code
def http_bot(state, model_selector, temperature, max_new_tokens, request: gr.Request):
logger.info(f"http_bot. ip: {request.client.host}")
start_tstamp = time.time()
model_name = model_selector
if state.skip_next:
# This generate call is skipped due to invalid inputs
yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5
return
if len(state.messages) == state.offset + 2:
# First round of conversation
if "llava" in model_name.lower():
if "v1" in model_name.lower():
template_name = "llava_v1"
elif "mpt" in model_name.lower():
template_name = "mpt_multimodal"
else:
template_name = "multimodal"
elif "mpt" in model_name:
template_name = "mpt_text"
elif "koala" in model_name: # Hardcode the condition
template_name = "bair_v1"
elif "v1" in model_name: # vicuna v1_1/v1_2
template_name = "vicuna_v1_1"
else:
template_name = "v1"
new_state = conv_templates[template_name].copy()
new_state.append_message(new_state.roles[0], state.messages[-2][1])
new_state.append_message(new_state.roles[1], None)
state = new_state
# Query worker address
controller_url = args.controller_url
ret = requests.post(controller_url + "/get_worker_address",
json={"model": model_name})
worker_addr = ret.json()["address"]
logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}")
# No available worker
if worker_addr == "":
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
# Construct prompt
prompt = state.get_prompt()
all_images = state.get_images(return_pil=True)
all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images]
for image, hash in zip(all_images, all_image_hash):
t = datetime.datetime.now()
filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg")
if not os.path.isfile(filename):
os.makedirs(os.path.dirname(filename), exist_ok=True)
image.save(filename)
# Make requests
pload = {
"model": model_name,
"prompt": prompt,
"temperature": float(temperature),
"max_new_tokens": min(int(max_new_tokens), 1536),
"stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2,
"images": f'List of {len(state.get_images())} images: {all_image_hash}',
}
logger.info(f"==== request ====\n{pload}")
pload['images'] = state.get_images()
state.messages[-1][-1] = ""
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
try:
# Stream output
response = requests.post(worker_addr + "/worker_generate_stream",
headers=headers, json=pload, stream=True, timeout=10)
for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode())
if data["error_code"] == 0:
output = data["text"][len(prompt):].strip()
output = post_process_code(output)
state.messages[-1][-1] = output + ""
yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5
else:
output = data["text"] + f" (error_code: {data['error_code']})"
state.messages[-1][-1] = output
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
time.sleep(0.03)
except requests.exceptions.RequestException as e:
state.messages[-1][-1] = server_error_msg
yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn)
return
state.messages[-1][-1] = state.messages[-1][-1][:-1]
yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5
finish_tstamp = time.time()
logger.info(f"{output}")
with open(get_conv_log_filename(), "a") as fout:
data = {
"tstamp": round(finish_tstamp, 4),
"type": "chat",
"model": model_name,
"start": round(start_tstamp, 4),
"finish": round(start_tstamp, 4),
"state": state.dict(),
"images": all_image_hash,
"ip": request.client.host,
}
fout.write(json.dumps(data) + "\n")
title_markdown = ("""
# 🌋 LLaVA: Large Language and Vision Assistant
[[Project Page]](https://llava-vl.github.io) [[Paper]](https://arxiv.org/abs/2304.08485) [[Code]](https://github.com/haotian-liu/LLaVA) [[Model]](https://huggingface.co/liuhaotian/LLaVA-13b-delta-v0)
""")
tos_markdown = ("""
### Terms of use
By using this service, users are required to agree to the following terms:
The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research.
Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator.
For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality.
""")
learn_more_markdown = ("""
### License
The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation.
""")
css = code_highlight_css + """
pre {
white-space: pre-wrap; /* Since CSS 2.1 */
white-space: -moz-pre-wrap; /* Mozilla, since 1999 */
white-space: -pre-wrap; /* Opera 4-6 */
white-space: -o-pre-wrap; /* Opera 7 */
word-wrap: break-word; /* Internet Explorer 5.5+ */
}
"""
def build_demo(embed_mode):
textbox = gr.Textbox(show_label=False,
placeholder="Enter text and press ENTER", visible=False).style(container=False)
with gr.Blocks(title="LLaVA", theme=gr.themes.Base(), css=css) as demo:
state = gr.State()
if not embed_mode:
gr.Markdown(title_markdown)
with gr.Row():
with gr.Column(scale=3):
with gr.Row(elem_id="model_selector_row"):
model_selector = gr.Dropdown(
choices=models,
value=models[0] if len(models) > 0 else "",
interactive=True,
show_label=False).style(container=False)
imagebox = gr.Image(type="pil")
image_process_mode = gr.Radio(
["Crop", "Resize", "Pad"],
value="Crop",
label="Preprocess for non-square image")
cur_dir = os.path.dirname(os.path.abspath(__file__))
gr.Examples(examples=[
[f"{cur_dir}/examples/extreme_ironing.jpg", "What is unusual about this image?"],
[f"{cur_dir}/examples/waterview.jpg", "What are the things I should be cautious about when I visit here?"],
], inputs=[imagebox, textbox])
with gr.Accordion("Parameters", open=False, visible=False) as parameter_row:
temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",)
max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",)
with gr.Column(scale=6):
chatbot = grChatbot(elem_id="chatbot", label="LLaVA Chatbot", visible=False).style(height=550)
with gr.Row():
with gr.Column(scale=8):
textbox.render()
with gr.Column(scale=1, min_width=60):
submit_btn = gr.Button(value="Submit", visible=False)
with gr.Row(visible=False) as button_row:
upvote_btn = gr.Button(value="👍 Upvote", interactive=False)
downvote_btn = gr.Button(value="👎 Downvote", interactive=False)
flag_btn = gr.Button(value="⚠️ Flag", interactive=False)
#stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False)
regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False)
clear_btn = gr.Button(value="🗑️ Clear history", interactive=False)
if not embed_mode:
gr.Markdown(tos_markdown)
gr.Markdown(learn_more_markdown)
url_params = gr.JSON(visible=False)
# Register listeners
btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn]
upvote_btn.click(upvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
downvote_btn.click(downvote_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
flag_btn.click(flag_last_response,
[state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn])
regenerate_btn.click(regenerate, [state, image_process_mode],
[state, chatbot, textbox, imagebox] + btn_list).then(
http_bot, [state, model_selector, temperature, max_output_tokens],
[state, chatbot] + btn_list)
clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox] + btn_list)
textbox.submit(add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list
).then(http_bot, [state, model_selector, temperature, max_output_tokens],
[state, chatbot] + btn_list)
submit_btn.click(add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list
).then(http_bot, [state, model_selector, temperature, max_output_tokens],
[state, chatbot] + btn_list)
if args.model_list_mode == "once":
demo.load(load_demo, [url_params], [state, model_selector,
chatbot, textbox, submit_btn, button_row, parameter_row],
_js=get_window_url_params)
elif args.model_list_mode == "reload":
demo.load(load_demo_refresh_model_list, None, [state, model_selector,
chatbot, textbox, submit_btn, button_row, parameter_row])
else:
raise ValueError(f"Unknown model list mode: {args.model_list_mode}")
return demo
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="0.0.0.0")
parser.add_argument("--port", type=int)
parser.add_argument("--controller-url", type=str, default="http://localhost:21001")
parser.add_argument("--concurrency-count", type=int, default=8)
parser.add_argument("--model-list-mode", type=str, default="once",
choices=["once", "reload"])
parser.add_argument("--share", action="store_true")
parser.add_argument("--moderate", action="store_true")
parser.add_argument("--embed", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
models = get_model_list()
logger.info(args)
demo = build_demo(args.embed)
demo.queue(concurrency_count=args.concurrency_count, status_update_rate=10,
api_open=False).launch(
server_name=args.host, server_port=args.port, share=args.share)

View File

@@ -0,0 +1,384 @@
"""
A model worker executes the model.
"""
import argparse
import asyncio
import dataclasses
import logging
import json
import time
from typing import List, Union
import threading
import uuid
from fastapi import FastAPI, Request, BackgroundTasks
from fastapi.responses import StreamingResponse
import requests
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
import uvicorn
from functools import partial
from llava.constants import WORKER_HEART_BEAT_INTERVAL
from llava.utils import (build_logger, server_error_msg,
pretty_print_semaphore)
from llava.model import *
GB = 1 << 30
worker_id = str(uuid.uuid4())[:6]
logger = build_logger("model_worker", f"model_worker_{worker_id}.log")
global_counter = 0
model_semaphore = None
DEFAULT_IMAGE_TOKEN = "<image>"
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
DEFAULT_IM_START_TOKEN = "<im_start>"
DEFAULT_IM_END_TOKEN = "<im_end>"
def heart_beat_worker(controller):
while True:
time.sleep(WORKER_HEART_BEAT_INTERVAL)
controller.send_heart_beat()
def load_model(model_path, model_name, num_gpus):
if num_gpus == 1:
kwargs = {}
else:
kwargs = {
"device_map": "auto",
"max_memory": {i: "13GiB" for i in range(num_gpus)},
}
tokenizer = AutoTokenizer.from_pretrained(model_path)
if 'llava' in model_name.lower():
if 'mpt' in model_name.lower():
model = LlavaMPTForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, **kwargs)
else:
model = LlavaLlamaForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, **kwargs)
elif 'mpt' in model_name.lower():
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True, **kwargs)
image_processor = None
if 'llava' in model_name.lower():
from transformers import CLIPImageProcessor, CLIPVisionModel
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
if mm_use_im_start_end:
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
vision_tower = model.get_model().vision_tower[0]
if vision_tower.device.type == 'meta':
vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda()
model.get_model().vision_tower[0] = vision_tower
else:
vision_tower.to(device='cuda', dtype=torch.float16)
vision_config = vision_tower.config
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
vision_config.use_im_start_end = mm_use_im_start_end
if mm_use_im_start_end:
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
if num_gpus == 1:
model.cuda()
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
return tokenizer, model, image_processor, context_len
class ModelWorker:
def __init__(self, controller_addr, worker_addr,
worker_id, no_register,
model_path, model_name,
keep_aspect_ratio,
num_gpus):
self.controller_addr = controller_addr
self.worker_addr = worker_addr
self.worker_id = worker_id
if model_path.endswith("/"):
model_path = model_path[:-1]
if model_name is None:
model_paths = model_path.split("/")
if model_paths[-1].startswith('checkpoint-'):
self.model_name = model_paths[-2] + "_" + model_paths[-1]
else:
self.model_name = model_paths[-1]
else:
self.model_name = model_name
logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...")
self.keep_aspect_ratio = keep_aspect_ratio
self.tokenizer, self.model, self.image_processor, self.context_len = load_model(
model_path, self.model_name, num_gpus)
self.is_multimodal = 'llava' in model_path.lower()
if not no_register:
self.register_to_controller()
self.heart_beat_thread = threading.Thread(
target=heart_beat_worker, args=(self,))
self.heart_beat_thread.start()
def register_to_controller(self):
logger.info("Register to controller")
url = self.controller_addr + "/register_worker"
data = {
"worker_name": self.worker_addr,
"check_heart_beat": True,
"worker_status": self.get_status()
}
r = requests.post(url, json=data)
assert r.status_code == 200
def send_heart_beat(self):
logger.info(f"Send heart beat. Models: {[self.model_name]}. "
f"Semaphore: {pretty_print_semaphore(model_semaphore)}. "
f"global_counter: {global_counter}")
url = self.controller_addr + "/receive_heart_beat"
while True:
try:
ret = requests.post(url, json={
"worker_name": self.worker_addr,
"queue_length": self.get_queue_length()}, timeout=5)
exist = ret.json()["exist"]
break
except requests.exceptions.RequestException as e:
logger.error(f"heart beat error: {e}")
time.sleep(5)
if not exist:
self.register_to_controller()
def get_queue_length(self):
if model_semaphore is None:
return 0
else:
return args.limit_model_concurrency - model_semaphore._value + (len(
model_semaphore._waiters) if model_semaphore._waiters is not None else 0)
def get_status(self):
return {
"model_names": [self.model_name],
"speed": 1,
"queue_length": self.get_queue_length(),
}
@torch.inference_mode()
def generate_stream(self, params):
tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor
prompt = params["prompt"]
ori_prompt = prompt
images = params.get("images", None)
if images is not None and len(images) > 0 and self.is_multimodal:
from PIL import Image
from io import BytesIO
import base64
assert type(images) is list
if len(images) > 0:
# assert len(images) == 1, "Only support one image for now"
images = [Image.open(BytesIO(base64.b64decode(image))) for image in images]
assert len(images) == prompt.count(DEFAULT_IMAGE_TOKEN), "Number of images does not match number of <image> tokens in prompt"
if self.keep_aspect_ratio:
new_images = []
for image_idx, image in enumerate(images):
max_hw, min_hw = max(image.size), min(image.size)
aspect_ratio = max_hw / min_hw
max_len, min_len = 448, 224
shortest_edge = int(min(max_len / aspect_ratio, min_len))
image = image_processor.preprocess(image, return_tensors='pt', do_center_crop=False, size={"shortest_edge": shortest_edge})['pixel_values'][0]
new_images.append(image.to(self.model.device, dtype=torch.float16))
# replace the image token with the image patch token in the prompt (each occurrence)
cur_token_len = (image.shape[1]//14) * (image.shape[2]//14)
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * cur_token_len
if getattr(self.model.config, 'mm_use_im_start_end', False):
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token, 1)
images = new_images
else:
images = image_processor(images, return_tensors='pt')['pixel_values']
images = images.to(self.model.device, dtype=torch.float16)
replace_token = DEFAULT_IMAGE_PATCH_TOKEN * 256 # HACK: 256 is the max image token length hacked
if getattr(self.model.config, 'mm_use_im_start_end', False):
replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token)
else:
images = None
image_args = {"images": images}
else:
images = None
image_args = {}
l_prompt = len(prompt)
temperature = float(params.get("temperature", 1.0))
max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024)
stop_str = params.get("stop", None)
stop_idx = None
if stop_str is not None:
stop_idx = tokenizer(stop_str).input_ids
if len(stop_idx) == 1:
stop_idx = stop_idx[0]
else:
stop_idx = None
input_ids = tokenizer(prompt).input_ids
output_ids = list(input_ids)
pred_ids = []
max_src_len = self.context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
past_key_values = None
for i in range(max_new_tokens):
if i == 0:
out = model(
torch.as_tensor([input_ids]).cuda(),
use_cache=True,
**image_args)
logits = out.logits
past_key_values = out.past_key_values
else:
attention_mask = torch.ones(
1, past_key_values[0][0].shape[-2] + 1, device="cuda")
out = model(input_ids=torch.as_tensor([[token]], device="cuda"),
use_cache=True,
attention_mask=attention_mask,
past_key_values=past_key_values)
logits = out.logits
past_key_values = out.past_key_values
last_token_logits = logits[0][-1]
if temperature < 1e-4:
token = int(torch.argmax(last_token_logits))
else:
probs = torch.softmax(last_token_logits / temperature, dim=-1)
token = int(torch.multinomial(probs, num_samples=1))
output_ids.append(token)
pred_ids.append(token)
if stop_idx is not None and token == stop_idx:
stopped = True
elif token == tokenizer.eos_token_id:
stopped = True
else:
stopped = False
if i % args.stream_interval == 0 or i == max_new_tokens - 1 or stopped:
cur_out = tokenizer.decode(pred_ids, skip_special_tokens=True)
pos = cur_out.rfind(stop_str)
if pos != -1:
cur_out = cur_out[:pos]
stopped = True
output = ori_prompt + cur_out
ret = {
"text": output,
"error_code": 0,
}
yield json.dumps(ret).encode() + b"\0"
if stopped:
break
if past_key_values is not None:
del past_key_values
def generate_stream_gate(self, params):
try:
for x in self.generate_stream(params):
yield x
except ValueError as e:
print("Caught ValueError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
except torch.cuda.CudaError as e:
print("Caught torch.cuda.CudaError:", e)
ret = {
"text": server_error_msg,
"error_code": 1,
}
yield json.dumps(ret).encode() + b"\0"
app = FastAPI()
def release_model_semaphore(fn=None):
model_semaphore.release()
if fn is not None:
fn()
@app.post("/worker_generate_stream")
async def generate_stream(request: Request):
global model_semaphore, global_counter
global_counter += 1
params = await request.json()
if model_semaphore is None:
model_semaphore = asyncio.Semaphore(args.limit_model_concurrency)
await model_semaphore.acquire()
worker.send_heart_beat()
generator = worker.generate_stream_gate(params)
background_tasks = BackgroundTasks()
background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat))
return StreamingResponse(generator, background=background_tasks)
@app.post("/worker_get_status")
async def get_status(request: Request):
return worker.get_status()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--host", type=str, default="localhost")
parser.add_argument("--port", type=int, default=21002)
parser.add_argument("--worker-address", type=str,
default="http://localhost:21002")
parser.add_argument("--controller-address", type=str,
default="http://localhost:21001")
parser.add_argument("--model-path", type=str, default="facebook/opt-350m")
parser.add_argument("--model-name", type=str)
parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
parser.add_argument("--keep-aspect-ratio", action="store_true")
parser.add_argument("--num-gpus", type=int, default=1)
parser.add_argument("--limit-model-concurrency", type=int, default=5)
parser.add_argument("--stream-interval", type=int, default=2)
parser.add_argument("--no-register", action="store_true")
args = parser.parse_args()
logger.info(f"args: {args}")
if args.multi_modal:
logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.")
worker = ModelWorker(args.controller_address,
args.worker_address,
worker_id,
args.no_register,
args.model_path,
args.model_name,
args.keep_aspect_ratio,
args.num_gpus)
uvicorn.run(app, host=args.host, port=args.port, log_level="info")

View File

@@ -0,0 +1,26 @@
"""
Manually register workers.
Usage:
python3 -m fastchat.serve.register_worker --controller http://localhost:21001 --worker-name http://localhost:21002
"""
import argparse
import requests
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--controller-address", type=str)
parser.add_argument("--worker-name", type=str)
parser.add_argument("--check-heart-beat", action="store_true")
args = parser.parse_args()
url = args.controller_address + "/register_worker"
data = {
"worker_name": args.worker_name,
"check_heart_beat": args.check_heart_beat,
"worker_status": None,
}
r = requests.post(url, json=data)
assert r.status_code == 200

View File

@@ -0,0 +1,62 @@
import argparse
import json
import requests
from llava.conversation import default_conversation
def main():
if args.worker_address:
worker_addr = args.worker_address
else:
controller_addr = args.controller_address
ret = requests.post(controller_addr + "/refresh_all_workers")
ret = requests.post(controller_addr + "/list_models")
models = ret.json()["models"]
models.sort()
print(f"Models: {models}")
ret = requests.post(controller_addr + "/get_worker_address",
json={"model": args.model_name})
worker_addr = ret.json()["address"]
print(f"worker_addr: {worker_addr}")
if worker_addr == "":
return
conv = default_conversation.copy()
conv.append_message(conv.roles[0], args.message)
prompt = conv.get_prompt()
headers = {"User-Agent": "LLaVA Client"}
pload = {
"model": args.model_name,
"prompt": prompt,
"max_new_tokens": args.max_new_tokens,
"temperature": 0.7,
"stop": conv.sep,
}
response = requests.post(worker_addr + "/worker_generate_stream", headers=headers,
json=pload, stream=True)
print(prompt.replace(conv.sep, "\n"), end="")
for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"):
if chunk:
data = json.loads(chunk.decode("utf-8"))
output = data["text"].split(conv.sep)[-1]
print(output, end="\r")
print("")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--controller-address", type=str, default="http://localhost:21001")
parser.add_argument("--worker-address", type=str)
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
parser.add_argument("--max-new-tokens", type=int, default=32)
parser.add_argument("--message", type=str, default=
"Tell me a story with more than 1000 words.")
args = parser.parse_args()
main()