add
This commit is contained in:
2
models/LLaVA/build/lib/llava/model/__init__.py
Normal file
2
models/LLaVA/build/lib/llava/model/__init__.py
Normal file
@@ -0,0 +1,2 @@
|
||||
from .llava import LlavaLlamaForCausalLM, LlavaConfig
|
||||
from .llava_mpt import LlavaMPTForCausalLM, LlavaMPTConfig
|
48
models/LLaVA/build/lib/llava/model/apply_delta.py
Normal file
48
models/LLaVA/build/lib/llava/model/apply_delta.py
Normal file
@@ -0,0 +1,48 @@
|
||||
"""
|
||||
Usage:
|
||||
python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta
|
||||
"""
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from llava import LlavaLlamaForCausalLM
|
||||
|
||||
|
||||
def apply_delta(base_model_path, target_model_path, delta_path):
|
||||
print("Loading base model")
|
||||
base = AutoModelForCausalLM.from_pretrained(
|
||||
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
|
||||
print("Loading delta")
|
||||
delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
|
||||
|
||||
print("Applying delta")
|
||||
for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"):
|
||||
if name not in base.state_dict():
|
||||
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
|
||||
continue
|
||||
if param.data.shape == base.state_dict()[name].shape:
|
||||
param.data += base.state_dict()[name]
|
||||
else:
|
||||
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \
|
||||
f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
|
||||
bparam = base.state_dict()[name]
|
||||
param.data[:bparam.shape[0], :bparam.shape[1]] += bparam
|
||||
|
||||
print("Saving target model")
|
||||
delta.save_pretrained(target_model_path)
|
||||
delta_tokenizer.save_pretrained(target_model_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--base-model-path", type=str, required=True)
|
||||
parser.add_argument("--target-model-path", type=str, required=True)
|
||||
parser.add_argument("--delta-path", type=str, required=True)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
|
29
models/LLaVA/build/lib/llava/model/consolidate.py
Normal file
29
models/LLaVA/build/lib/llava/model/consolidate.py
Normal file
@@ -0,0 +1,29 @@
|
||||
"""
|
||||
Usage:
|
||||
python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate
|
||||
"""
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from llava.model import *
|
||||
from llava.model.utils import auto_upgrade
|
||||
|
||||
|
||||
def consolidate_ckpt(src_path, dst_path):
|
||||
print("Loading model")
|
||||
auto_upgrade(src_path)
|
||||
src_model = AutoModelForCausalLM.from_pretrained(src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
src_tokenizer = AutoTokenizer.from_pretrained(src_path)
|
||||
src_model.save_pretrained(dst_path)
|
||||
src_tokenizer.save_pretrained(dst_path)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--src", type=str, required=True)
|
||||
parser.add_argument("--dst", type=str, required=True)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
consolidate_ckpt(args.src, args.dst)
|
330
models/LLaVA/build/lib/llava/model/llava.py
Normal file
330
models/LLaVA/build/lib/llava/model/llava.py
Normal file
@@ -0,0 +1,330 @@
|
||||
# Copyright 2023 Haotian Liu
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, \
|
||||
LlamaConfig, LlamaModel, LlamaForCausalLM, \
|
||||
CLIPVisionModel, CLIPImageProcessor
|
||||
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||
|
||||
|
||||
DEFAULT_IMAGE_TOKEN = "<image>"
|
||||
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
||||
DEFAULT_IM_START_TOKEN = "<im_start>"
|
||||
DEFAULT_IM_END_TOKEN = "<im_end>"
|
||||
|
||||
|
||||
class LlavaConfig(LlamaConfig):
|
||||
model_type = "llava"
|
||||
|
||||
|
||||
class LlavaLlamaModel(LlamaModel):
|
||||
config_class = LlavaConfig
|
||||
|
||||
def __init__(self, config: LlamaConfig, mm_vision_tower=None, mm_hidden_size=None):
|
||||
super(LlavaLlamaModel, self).__init__(config)
|
||||
|
||||
if hasattr(config, "mm_vision_tower"):
|
||||
# HACK: for FSDP
|
||||
self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)]
|
||||
# self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)
|
||||
|
||||
if hasattr(config, "use_mm_proj"):
|
||||
self.mm_projector = nn.Linear(config.mm_hidden_size, config.hidden_size)
|
||||
|
||||
def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
|
||||
pretrain_mm_mlp_adapter=None, tune_mm_mlp_adapter=False):
|
||||
self.config.mm_vision_tower = vision_tower
|
||||
|
||||
image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
||||
|
||||
if not hasattr(self, 'vision_tower'):
|
||||
vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
||||
else:
|
||||
vision_tower = self.vision_tower[0]
|
||||
vision_tower.requires_grad_(False)
|
||||
vision_tower = vision_tower.to(torch.float16)
|
||||
self.vision_tower = [vision_tower]
|
||||
|
||||
vision_config = vision_tower.config
|
||||
num_patches = (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
|
||||
self.config.use_mm_proj = True
|
||||
self.config.mm_hidden_size = vision_config.hidden_size
|
||||
self.config.mm_vision_select_layer = mm_vision_select_layer
|
||||
|
||||
if not hasattr(self, 'mm_projector'):
|
||||
self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.hidden_size)
|
||||
|
||||
if pretrain_mm_mlp_adapter is not None:
|
||||
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
||||
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
|
||||
|
||||
return dict(
|
||||
image_processor=image_processor,
|
||||
image_token_len=num_patches,
|
||||
vision_config=vision_config
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
images: Optional[torch.FloatTensor] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||
|
||||
# HACK: replace back original embeddings for LLaVA pretraining
|
||||
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
||||
# if orig_embeds_params is not None:
|
||||
# orig_embeds_params = orig_embeds_params[0]
|
||||
# with torch.no_grad():
|
||||
# self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data
|
||||
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.embed_tokens(input_ids)
|
||||
|
||||
vision_tower = getattr(self, 'vision_tower', None)
|
||||
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
||||
# TODO: this is a modified multimodal LLM -- Haotian Liu
|
||||
vision_tower = vision_tower[0] # HACK: for FSDP
|
||||
with torch.no_grad():
|
||||
if type(images) is list:
|
||||
# variable length images
|
||||
image_features = []
|
||||
for image in images:
|
||||
image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
|
||||
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
||||
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
||||
image_feature = select_hidden_state[:, 1:]
|
||||
image_features.append(image_feature)
|
||||
else:
|
||||
image_forward_outs = vision_tower(images, output_hidden_states=True)
|
||||
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
||||
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
|
||||
image_features = select_hidden_state[:, 1:]
|
||||
if type(images) is list:
|
||||
image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
|
||||
else:
|
||||
image_features = self.mm_projector(image_features)
|
||||
dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
||||
dummy_image_features = self.mm_projector(dummy_image_features)
|
||||
|
||||
new_input_embeds = []
|
||||
cur_image_idx = 0
|
||||
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
|
||||
if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
|
||||
# multimodal LLM, but the current sample is not multimodal
|
||||
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
||||
new_input_embeds.append(cur_input_embeds)
|
||||
cur_image_idx += 1
|
||||
continue
|
||||
if vision_tower.config.use_im_start_end:
|
||||
cur_image_features = image_features[cur_image_idx]
|
||||
num_patches = cur_image_features.shape[0]
|
||||
if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
|
||||
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
||||
image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
|
||||
for image_start_token_pos in image_start_tokens:
|
||||
cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
|
||||
num_patches = cur_image_features.shape[0]
|
||||
if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
|
||||
raise ValueError("The image end token should follow the image start token.")
|
||||
if orig_embeds_params is not None:
|
||||
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
|
||||
else:
|
||||
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
|
||||
cur_image_idx += 1
|
||||
new_input_embeds.append(cur_new_input_embeds)
|
||||
else:
|
||||
cur_image_features = image_features[cur_image_idx]
|
||||
num_patches = cur_image_features.shape[0]
|
||||
if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
|
||||
raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
|
||||
masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
|
||||
mask_index_start = masked_indices[0]
|
||||
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
|
||||
raise ValueError("The image patch tokens should be consecutive.")
|
||||
if orig_embeds_params is not None:
|
||||
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
|
||||
else:
|
||||
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
|
||||
new_input_embeds.append(cur_new_input_embeds)
|
||||
cur_image_idx += 1
|
||||
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
||||
|
||||
return super(LlavaLlamaModel, self).forward(
|
||||
input_ids=None, attention_mask=attention_mask, past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds, use_cache=use_cache,
|
||||
output_attentions=output_attentions, output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict
|
||||
)
|
||||
|
||||
|
||||
class LlavaLlamaForCausalLM(LlamaForCausalLM):
|
||||
config_class = LlavaConfig
|
||||
|
||||
def __init__(self, config):
|
||||
super(LlamaForCausalLM, self).__init__(config)
|
||||
self.model = LlavaLlamaModel(config)
|
||||
|
||||
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
||||
|
||||
# Initialize weights and apply final processing
|
||||
self.post_init()
|
||||
|
||||
def get_model(self):
|
||||
return self.model
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids: torch.LongTensor = None,
|
||||
attention_mask: Optional[torch.Tensor] = None,
|
||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||
labels: Optional[torch.LongTensor] = None,
|
||||
use_cache: Optional[bool] = None,
|
||||
output_attentions: Optional[bool] = None,
|
||||
output_hidden_states: Optional[bool] = None,
|
||||
images: Optional[torch.FloatTensor] = None,
|
||||
return_dict: Optional[bool] = None,
|
||||
) -> Union[Tuple, CausalLMOutputWithPast]:
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = (
|
||||
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
)
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
||||
outputs = self.model(
|
||||
input_ids=input_ids,
|
||||
attention_mask=attention_mask,
|
||||
past_key_values=past_key_values,
|
||||
inputs_embeds=inputs_embeds,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
images=images
|
||||
)
|
||||
|
||||
hidden_states = outputs[0]
|
||||
logits = self.lm_head(hidden_states)
|
||||
|
||||
loss = None
|
||||
if labels is not None:
|
||||
# Shift so that tokens < n predict n
|
||||
shift_logits = logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
# Flatten the tokens
|
||||
loss_fct = CrossEntropyLoss()
|
||||
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
||||
shift_labels = shift_labels.view(-1)
|
||||
# Enable model/pipeline parallelism
|
||||
shift_labels = shift_labels.to(shift_logits.device)
|
||||
loss = loss_fct(shift_logits, shift_labels)
|
||||
|
||||
if not return_dict:
|
||||
output = (logits,) + outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
|
||||
return CausalLMOutputWithPast(
|
||||
loss=loss,
|
||||
logits=logits,
|
||||
past_key_values=outputs.past_key_values,
|
||||
hidden_states=outputs.hidden_states,
|
||||
attentions=outputs.attentions,
|
||||
)
|
||||
|
||||
def prepare_inputs_for_generation(
|
||||
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
||||
):
|
||||
if past_key_values:
|
||||
input_ids = input_ids[:, -1:]
|
||||
|
||||
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
||||
if inputs_embeds is not None and past_key_values is None:
|
||||
model_inputs = {"inputs_embeds": inputs_embeds}
|
||||
else:
|
||||
model_inputs = {"input_ids": input_ids}
|
||||
|
||||
model_inputs.update(
|
||||
{
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"attention_mask": attention_mask,
|
||||
"images": kwargs.get("images", None),
|
||||
}
|
||||
)
|
||||
return model_inputs
|
||||
|
||||
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
|
||||
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
|
||||
vision_config = self.get_model().vision_tower[0].config
|
||||
vision_config.use_im_start_end = mm_use_im_start_end
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
self.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
if mm_use_im_start_end:
|
||||
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
self.resize_token_embeddings(len(tokenizer))
|
||||
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||||
|
||||
if num_new_tokens > 0:
|
||||
input_embeddings = self.get_input_embeddings().weight.data
|
||||
output_embeddings = self.get_output_embeddings().weight.data
|
||||
|
||||
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
||||
dim=0, keepdim=True)
|
||||
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
||||
dim=0, keepdim=True)
|
||||
|
||||
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
||||
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
||||
|
||||
if tune_mm_mlp_adapter:
|
||||
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
|
||||
for p in self.get_input_embeddings().parameters():
|
||||
p.requires_grad = True
|
||||
for p in self.get_output_embeddings().parameters():
|
||||
p.requires_grad = False
|
||||
|
||||
if pretrain_mm_mlp_adapter:
|
||||
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
||||
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
||||
assert num_new_tokens == 2
|
||||
if input_embeddings.shape == embed_tokens_weight.shape:
|
||||
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
||||
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
||||
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
||||
else:
|
||||
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
||||
|
||||
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||||
|
||||
AutoConfig.register("llava", LlavaConfig)
|
||||
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|
281
models/LLaVA/build/lib/llava/model/llava_mpt.py
Normal file
281
models/LLaVA/build/lib/llava/model/llava_mpt.py
Normal file
@@ -0,0 +1,281 @@
|
||||
# Copyright 2023 Haotian Liu
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from torch.nn import CrossEntropyLoss
|
||||
|
||||
import math
|
||||
|
||||
from transformers import AutoConfig, AutoModelForCausalLM, \
|
||||
CLIPVisionModel, CLIPImageProcessor
|
||||
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||
|
||||
from .mpt.modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel
|
||||
|
||||
|
||||
DEFAULT_IMAGE_TOKEN = "<image>"
|
||||
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
||||
DEFAULT_IM_START_TOKEN = "<im_start>"
|
||||
DEFAULT_IM_END_TOKEN = "<im_end>"
|
||||
|
||||
|
||||
class LlavaMPTConfig(MPTConfig):
|
||||
model_type = "llava_mpt"
|
||||
|
||||
|
||||
class LlavaMPTModel(MPTModel):
|
||||
config_class = LlavaMPTConfig
|
||||
|
||||
def __init__(self, config: MPTConfig, mm_vision_tower=None, mm_hidden_size=None):
|
||||
super(LlavaMPTModel, self).__init__(config)
|
||||
|
||||
if hasattr(config, "mm_vision_tower"):
|
||||
# HACK: for FSDP
|
||||
self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)]
|
||||
# self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)
|
||||
|
||||
if hasattr(config, "use_mm_proj"):
|
||||
self.mm_projector = nn.Linear(config.mm_hidden_size, config.d_model)
|
||||
|
||||
def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
|
||||
pretrain_mm_mlp_adapter=None, tune_mm_mlp_adapter=False):
|
||||
self.config.mm_vision_tower = vision_tower
|
||||
|
||||
image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
||||
|
||||
if not hasattr(self, 'vision_tower'):
|
||||
vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
||||
else:
|
||||
vision_tower = self.vision_tower[0]
|
||||
vision_tower.requires_grad_(False)
|
||||
vision_tower = vision_tower.to(torch.float16)
|
||||
self.vision_tower = [vision_tower]
|
||||
|
||||
vision_config = vision_tower.config
|
||||
num_patches = (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
|
||||
self.config.use_mm_proj = True
|
||||
self.config.mm_hidden_size = vision_config.hidden_size
|
||||
self.config.mm_vision_select_layer = mm_vision_select_layer
|
||||
|
||||
if not hasattr(self, 'mm_projector'):
|
||||
self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.d_model)
|
||||
|
||||
if pretrain_mm_mlp_adapter is not None:
|
||||
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
||||
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items() if 'mm_projector' in k})
|
||||
|
||||
return dict(
|
||||
image_processor=image_processor,
|
||||
image_token_len=num_patches,
|
||||
vision_config=vision_config
|
||||
)
|
||||
|
||||
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None):
|
||||
|
||||
# HACK: replace back original embeddings for LLaVA pretraining
|
||||
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
||||
# if orig_embeds_params is not None:
|
||||
# orig_embeds_params = orig_embeds_params[0]
|
||||
# with torch.no_grad():
|
||||
# self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data
|
||||
|
||||
inputs_embeds = self.wte(input_ids)
|
||||
|
||||
vision_tower = getattr(self, 'vision_tower', None)
|
||||
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
||||
# TODO: this is a modified multimodal LLM -- Haotian Liu
|
||||
vision_tower = vision_tower[0] # HACK: for FSDP
|
||||
with torch.no_grad():
|
||||
if type(images) is list:
|
||||
# variable length images
|
||||
image_features = []
|
||||
for image in images:
|
||||
image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
|
||||
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
||||
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
||||
image_feature = select_hidden_state[:, 1:]
|
||||
image_features.append(image_feature)
|
||||
else:
|
||||
image_forward_outs = vision_tower(images, output_hidden_states=True)
|
||||
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
||||
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
|
||||
image_features = select_hidden_state[:, 1:]
|
||||
if type(images) is list:
|
||||
image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
|
||||
else:
|
||||
image_features = self.mm_projector(image_features)
|
||||
dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
||||
dummy_image_features = self.mm_projector(dummy_image_features)
|
||||
|
||||
new_input_embeds = []
|
||||
cur_image_idx = 0
|
||||
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
|
||||
if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
|
||||
# multimodal LLM, but the current sample is not multimodal
|
||||
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
||||
new_input_embeds.append(cur_input_embeds)
|
||||
continue
|
||||
if vision_tower.config.use_im_start_end:
|
||||
cur_image_features = image_features[cur_image_idx]
|
||||
num_patches = cur_image_features.shape[0]
|
||||
if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
|
||||
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
||||
image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
|
||||
for image_start_token_pos in image_start_tokens:
|
||||
cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
|
||||
num_patches = cur_image_features.shape[0]
|
||||
if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
|
||||
raise ValueError("The image end token should follow the image start token.")
|
||||
if orig_embeds_params is not None:
|
||||
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
|
||||
else:
|
||||
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
|
||||
cur_image_idx += 1
|
||||
new_input_embeds.append(cur_new_input_embeds)
|
||||
else:
|
||||
cur_image_features = image_features[cur_image_idx]
|
||||
num_patches = cur_image_features.shape[0]
|
||||
if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
|
||||
raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
|
||||
masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
|
||||
mask_index_start = masked_indices[0]
|
||||
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
|
||||
raise ValueError("The image patch tokens should be consecutive.")
|
||||
if orig_embeds_params is not None:
|
||||
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
|
||||
else:
|
||||
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
|
||||
new_input_embeds.append(cur_new_input_embeds)
|
||||
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
||||
|
||||
return super(LlavaMPTModel, self).forward(input_ids=None, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, tok_emb=inputs_embeds)
|
||||
|
||||
|
||||
class LlavaMPTForCausalLM(MPTForCausalLM):
|
||||
config_class = LlavaMPTConfig
|
||||
supports_gradient_checkpointing = True
|
||||
|
||||
def __init__(self, config):
|
||||
super(MPTForCausalLM, self).__init__(config)
|
||||
|
||||
if not config.tie_word_embeddings:
|
||||
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
||||
self.transformer = LlavaMPTModel(config)
|
||||
self.logit_scale = None
|
||||
if config.logit_scale is not None:
|
||||
logit_scale = config.logit_scale
|
||||
if isinstance(logit_scale, str):
|
||||
if logit_scale == 'inv_sqrt_d_model':
|
||||
logit_scale = 1 / math.sqrt(config.d_model)
|
||||
else:
|
||||
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
||||
self.logit_scale = logit_scale
|
||||
|
||||
def get_model(self):
|
||||
return self.transformer
|
||||
|
||||
def _set_gradient_checkpointing(self, module, value=False):
|
||||
if isinstance(module, LlavaMPTModel):
|
||||
module.gradient_checkpointing = value
|
||||
|
||||
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None):
|
||||
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, images=images)
|
||||
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
|
||||
if self.logit_scale is not None:
|
||||
if self.logit_scale == 0:
|
||||
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
||||
logits *= self.logit_scale
|
||||
loss = None
|
||||
if labels is not None:
|
||||
labels = torch.roll(labels, shifts=-1)
|
||||
labels[:, -1] = -100
|
||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
||||
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
||||
if inputs_embeds is not None:
|
||||
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
||||
attention_mask = kwargs['attention_mask'].bool()
|
||||
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
||||
raise NotImplementedError('MPT does not support generation with right padding.')
|
||||
if self.transformer.attn_uses_sequence_id and self.training:
|
||||
sequence_id = torch.zeros_like(input_ids[:1])
|
||||
else:
|
||||
sequence_id = None
|
||||
if past_key_values is not None:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
if self.transformer.prefix_lm:
|
||||
prefix_mask = torch.ones_like(attention_mask)
|
||||
if kwargs.get('use_cache') == False:
|
||||
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
||||
else:
|
||||
prefix_mask = None
|
||||
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), "images": kwargs.get("images", None)}
|
||||
|
||||
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
|
||||
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
|
||||
vision_config = self.get_model().vision_tower[0].config
|
||||
vision_config.use_im_start_end = mm_use_im_start_end
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
self.resize_token_embeddings(len(tokenizer))
|
||||
|
||||
if mm_use_im_start_end:
|
||||
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
self.resize_token_embeddings(len(tokenizer))
|
||||
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||||
|
||||
if num_new_tokens > 0:
|
||||
input_embeddings = self.get_input_embeddings().weight.data
|
||||
output_embeddings = self.get_output_embeddings().weight.data
|
||||
|
||||
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
||||
dim=0, keepdim=True)
|
||||
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
||||
dim=0, keepdim=True)
|
||||
|
||||
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
||||
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
||||
|
||||
if tune_mm_mlp_adapter:
|
||||
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
|
||||
for p in self.get_input_embeddings().parameters():
|
||||
p.requires_grad = True
|
||||
for p in self.get_output_embeddings().parameters():
|
||||
p.requires_grad = False
|
||||
|
||||
if pretrain_mm_mlp_adapter:
|
||||
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
||||
embed_tokens_weight = mm_projector_weights['transformer.wte.weight']
|
||||
assert num_new_tokens == 2
|
||||
if input_embeddings.shape == embed_tokens_weight.shape:
|
||||
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
||||
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
||||
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
||||
else:
|
||||
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
||||
|
||||
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||||
|
||||
AutoConfig.register("llava_mpt", LlavaMPTConfig)
|
||||
AutoModelForCausalLM.register(LlavaMPTConfig, LlavaMPTForCausalLM)
|
52
models/LLaVA/build/lib/llava/model/make_delta.py
Normal file
52
models/LLaVA/build/lib/llava/model/make_delta.py
Normal file
@@ -0,0 +1,52 @@
|
||||
"""
|
||||
Usage:
|
||||
python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta
|
||||
"""
|
||||
import argparse
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
from llava.model.utils import auto_upgrade
|
||||
|
||||
|
||||
def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id):
|
||||
print("Loading base model")
|
||||
base = AutoModelForCausalLM.from_pretrained(
|
||||
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
|
||||
print("Loading target model")
|
||||
auto_upgrade(target_model_path)
|
||||
target = AutoModelForCausalLM.from_pretrained(target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
||||
|
||||
print("Calculating delta")
|
||||
for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"):
|
||||
if name not in base.state_dict():
|
||||
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
|
||||
continue
|
||||
if param.data.shape == base.state_dict()[name].shape:
|
||||
param.data -= base.state_dict()[name]
|
||||
else:
|
||||
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
|
||||
bparam = base.state_dict()[name]
|
||||
param.data[:bparam.shape[0], :bparam.shape[1]] -= bparam
|
||||
|
||||
print("Saving delta")
|
||||
if hub_repo_id:
|
||||
kwargs = {"push_to_hub": True, "repo_id": hub_repo_id}
|
||||
else:
|
||||
kwargs = {}
|
||||
target.save_pretrained(delta_path, **kwargs)
|
||||
target_tokenizer = AutoTokenizer.from_pretrained(target_model_path)
|
||||
target_tokenizer.save_pretrained(delta_path, **kwargs)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--base-model-path", type=str, required=True)
|
||||
parser.add_argument("--target-model-path", type=str, required=True)
|
||||
parser.add_argument("--delta-path", type=str, required=True)
|
||||
parser.add_argument("--hub-repo-id", type=str, default=None)
|
||||
args = parser.parse_args()
|
||||
|
||||
make_delta(args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id)
|
41
models/LLaVA/build/lib/llava/model/mpt/adapt_tokenizer.py
Normal file
41
models/LLaVA/build/lib/llava/model/mpt/adapt_tokenizer.py
Normal file
@@ -0,0 +1,41 @@
|
||||
from typing import Union
|
||||
from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
||||
NUM_SENTINEL_TOKENS: int = 100
|
||||
|
||||
def adapt_tokenizer_for_denoising(tokenizer: Tokenizer):
|
||||
"""Adds sentinel tokens and padding token (if missing).
|
||||
|
||||
Expands the tokenizer vocabulary to include sentinel tokens
|
||||
used in mixture-of-denoiser tasks as well as a padding token.
|
||||
|
||||
All added tokens are added as special tokens. No tokens are
|
||||
added if sentinel tokens and padding token already exist.
|
||||
"""
|
||||
sentinels_to_add = [f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)]
|
||||
tokenizer.add_tokens(sentinels_to_add, special_tokens=True)
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.add_tokens('<pad>', special_tokens=True)
|
||||
tokenizer.pad_token = '<pad>'
|
||||
assert tokenizer.pad_token_id is not None
|
||||
sentinels = ''.join([f'<extra_id_{i}>' for i in range(NUM_SENTINEL_TOKENS)])
|
||||
_sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids
|
||||
tokenizer.sentinel_token_ids = _sentinel_token_ids
|
||||
|
||||
class AutoTokenizerForMOD(AutoTokenizer):
|
||||
"""AutoTokenizer + Adaptation for MOD.
|
||||
|
||||
A simple wrapper around AutoTokenizer to make instantiating
|
||||
an MOD-adapted tokenizer a bit easier.
|
||||
|
||||
MOD-adapted tokenizers have sentinel tokens (e.g., <extra_id_0>),
|
||||
a padding token, and a property to get the token ids of the
|
||||
sentinel tokens.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def from_pretrained(cls, *args, **kwargs):
|
||||
"""See `AutoTokenizer.from_pretrained` docstring."""
|
||||
tokenizer = super().from_pretrained(*args, **kwargs)
|
||||
adapt_tokenizer_for_denoising(tokenizer)
|
||||
return tokenizer
|
276
models/LLaVA/build/lib/llava/model/mpt/attention.py
Normal file
276
models/LLaVA/build/lib/llava/model/mpt/attention.py
Normal file
@@ -0,0 +1,276 @@
|
||||
"""Attention layers."""
|
||||
import math
|
||||
import warnings
|
||||
from typing import Optional
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from einops import rearrange
|
||||
from torch import nn
|
||||
from .norm import LPLayerNorm
|
||||
|
||||
def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool):
|
||||
if original_is_causal and num_query_tokens != num_key_tokens:
|
||||
if num_query_tokens != 1:
|
||||
raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.')
|
||||
else:
|
||||
return False
|
||||
return original_is_causal
|
||||
|
||||
def scaled_multihead_dot_product_attention(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
||||
q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads)
|
||||
k = rearrange(key, 'b s (h d) -> b h d s', h=1 if multiquery else n_heads)
|
||||
v = rearrange(value, 'b s (h d) -> b h s d', h=1 if multiquery else n_heads)
|
||||
min_val = torch.finfo(q.dtype).min
|
||||
(b, _, s_q, d) = q.shape
|
||||
s_k = k.size(-1)
|
||||
if softmax_scale is None:
|
||||
softmax_scale = 1 / math.sqrt(d)
|
||||
attn_weight = q.matmul(k) * softmax_scale
|
||||
if attn_bias is not None:
|
||||
if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q):
|
||||
raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.')
|
||||
attn_weight = attn_weight + attn_bias
|
||||
if key_padding_mask is not None:
|
||||
if attn_bias is not None:
|
||||
warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
||||
attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val)
|
||||
if is_causal:
|
||||
s = max(s_q, s_k)
|
||||
causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16)
|
||||
causal_mask = causal_mask.tril()
|
||||
causal_mask = causal_mask.to(torch.bool)
|
||||
causal_mask = ~causal_mask
|
||||
causal_mask = causal_mask[-s_q:, -s_k:]
|
||||
attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val)
|
||||
attn_weight = torch.softmax(attn_weight, dim=-1)
|
||||
if dropout_p:
|
||||
attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True)
|
||||
out = attn_weight.matmul(v)
|
||||
out = rearrange(out, 'b h s d -> b s (h d)')
|
||||
if needs_weights:
|
||||
return (out, attn_weight)
|
||||
return (out, None)
|
||||
|
||||
def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]):
|
||||
for tensor in tensors:
|
||||
if tensor.dtype not in valid_dtypes:
|
||||
raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.')
|
||||
if not tensor.is_cuda:
|
||||
raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).')
|
||||
|
||||
def flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
||||
try:
|
||||
from flash_attn import bert_padding, flash_attn_interface
|
||||
except:
|
||||
raise RuntimeError('Please install flash-attn==1.0.3.post0')
|
||||
check_valid_inputs(query, key, value)
|
||||
if attn_bias is not None:
|
||||
raise NotImplementedError(f'attn_bias not implemented for flash attn.')
|
||||
(batch_size, seqlen) = query.shape[:2]
|
||||
if key_padding_mask is None:
|
||||
key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool)
|
||||
query_padding_mask = key_padding_mask[:, -query.size(1):]
|
||||
(query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask)
|
||||
query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads)
|
||||
(key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask)
|
||||
key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
||||
(value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask)
|
||||
value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads)
|
||||
if multiquery:
|
||||
key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1))
|
||||
value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1))
|
||||
dropout_p = dropout_p if training else 0.0
|
||||
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
||||
output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights)
|
||||
output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen)
|
||||
return (output, None)
|
||||
|
||||
def triton_flash_attn_fn(query, key, value, n_heads, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False):
|
||||
try:
|
||||
from flash_attn import flash_attn_triton
|
||||
except:
|
||||
raise RuntimeError('Please install flash-attn==1.0.3.post0 and triton==2.0.0.dev20221202')
|
||||
check_valid_inputs(query, key, value)
|
||||
if dropout_p:
|
||||
raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.')
|
||||
if needs_weights:
|
||||
raise NotImplementedError(f'attn_impl: triton cannot return attn weights.')
|
||||
if key_padding_mask is not None:
|
||||
warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.')
|
||||
(b_size, s_k) = key_padding_mask.shape[:2]
|
||||
if attn_bias is None:
|
||||
attn_bias = query.new_zeros(b_size, 1, 1, s_k)
|
||||
attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min)
|
||||
query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads)
|
||||
key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
||||
value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads)
|
||||
if multiquery:
|
||||
key = key.expand(*key.shape[:2], n_heads, key.size(-1))
|
||||
value = value.expand(*value.shape[:2], n_heads, value.size(-1))
|
||||
reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal)
|
||||
attn_output = flash_attn_triton.flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale)
|
||||
output = attn_output.view(*attn_output.shape[:2], -1)
|
||||
return (output, None)
|
||||
|
||||
class MultiheadAttention(nn.Module):
|
||||
"""Multi-head self attention.
|
||||
|
||||
Using torch or triton attention implemetation enables user to also use
|
||||
additive bias.
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
||||
super().__init__()
|
||||
self.attn_impl = attn_impl
|
||||
self.clip_qkv = clip_qkv
|
||||
self.qk_ln = qk_ln
|
||||
self.d_model = d_model
|
||||
self.n_heads = n_heads
|
||||
self.softmax_scale = softmax_scale
|
||||
if self.softmax_scale is None:
|
||||
self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads)
|
||||
self.attn_dropout_p = attn_pdrop
|
||||
self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device)
|
||||
fuse_splits = (d_model, 2 * d_model)
|
||||
self.Wqkv._fused = (0, fuse_splits)
|
||||
if self.qk_ln:
|
||||
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
||||
self.q_ln = layernorm_class(self.d_model, device=device)
|
||||
self.k_ln = layernorm_class(self.d_model, device=device)
|
||||
if self.attn_impl == 'flash':
|
||||
self.attn_fn = flash_attn_fn
|
||||
elif self.attn_impl == 'triton':
|
||||
self.attn_fn = triton_flash_attn_fn
|
||||
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
||||
elif self.attn_impl == 'torch':
|
||||
self.attn_fn = scaled_multihead_dot_product_attention
|
||||
if torch.cuda.is_available():
|
||||
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
||||
else:
|
||||
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
||||
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
||||
self.out_proj._is_residual = True
|
||||
|
||||
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
||||
qkv = self.Wqkv(x)
|
||||
if self.clip_qkv:
|
||||
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
||||
(query, key, value) = qkv.chunk(3, dim=2)
|
||||
key_padding_mask = attention_mask
|
||||
if self.qk_ln:
|
||||
dtype = query.dtype
|
||||
query = self.q_ln(query).to(dtype)
|
||||
key = self.k_ln(key).to(dtype)
|
||||
if past_key_value is not None:
|
||||
if len(past_key_value) != 0:
|
||||
key = torch.cat([past_key_value[0], key], dim=1)
|
||||
value = torch.cat([past_key_value[1], value], dim=1)
|
||||
past_key_value = (key, value)
|
||||
if attn_bias is not None:
|
||||
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
||||
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights)
|
||||
return (self.out_proj(context), attn_weights, past_key_value)
|
||||
|
||||
class MultiQueryAttention(nn.Module):
|
||||
"""Multi-Query self attention.
|
||||
|
||||
Using torch or triton attention implemetation enables user to also use
|
||||
additive bias.
|
||||
"""
|
||||
|
||||
def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, device: Optional[str]=None):
|
||||
super().__init__()
|
||||
self.attn_impl = attn_impl
|
||||
self.clip_qkv = clip_qkv
|
||||
self.qk_ln = qk_ln
|
||||
self.d_model = d_model
|
||||
self.n_heads = n_heads
|
||||
self.head_dim = d_model // n_heads
|
||||
self.softmax_scale = softmax_scale
|
||||
if self.softmax_scale is None:
|
||||
self.softmax_scale = 1 / math.sqrt(self.head_dim)
|
||||
self.attn_dropout_p = attn_pdrop
|
||||
self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device)
|
||||
fuse_splits = (d_model, d_model + self.head_dim)
|
||||
self.Wqkv._fused = (0, fuse_splits)
|
||||
if self.qk_ln:
|
||||
layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm
|
||||
self.q_ln = layernorm_class(d_model, device=device)
|
||||
self.k_ln = layernorm_class(self.head_dim, device=device)
|
||||
if self.attn_impl == 'flash':
|
||||
self.attn_fn = flash_attn_fn
|
||||
elif self.attn_impl == 'triton':
|
||||
self.attn_fn = triton_flash_attn_fn
|
||||
warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.')
|
||||
elif self.attn_impl == 'torch':
|
||||
self.attn_fn = scaled_multihead_dot_product_attention
|
||||
if torch.cuda.is_available():
|
||||
warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.')
|
||||
else:
|
||||
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
||||
self.out_proj = nn.Linear(self.d_model, self.d_model, device=device)
|
||||
self.out_proj._is_residual = True
|
||||
|
||||
def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False):
|
||||
qkv = self.Wqkv(x)
|
||||
if self.clip_qkv:
|
||||
qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv)
|
||||
(query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2)
|
||||
key_padding_mask = attention_mask
|
||||
if self.qk_ln:
|
||||
dtype = query.dtype
|
||||
query = self.q_ln(query).to(dtype)
|
||||
key = self.k_ln(key).to(dtype)
|
||||
if past_key_value is not None:
|
||||
if len(past_key_value) != 0:
|
||||
key = torch.cat([past_key_value[0], key], dim=1)
|
||||
value = torch.cat([past_key_value[1], value], dim=1)
|
||||
past_key_value = (key, value)
|
||||
if attn_bias is not None:
|
||||
attn_bias = attn_bias[:, :, -query.size(1):, -key.size(1):]
|
||||
(context, attn_weights) = self.attn_fn(query, key, value, self.n_heads, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True)
|
||||
return (self.out_proj(context), attn_weights, past_key_value)
|
||||
|
||||
def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id):
|
||||
if attn_impl == 'flash':
|
||||
return None
|
||||
elif attn_impl in ['torch', 'triton']:
|
||||
if alibi:
|
||||
if (prefix_lm or not causal) or use_sequence_id:
|
||||
return (1, n_heads, seq_len, seq_len)
|
||||
return (1, n_heads, 1, seq_len)
|
||||
elif prefix_lm or use_sequence_id:
|
||||
return (1, 1, seq_len, seq_len)
|
||||
return None
|
||||
else:
|
||||
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
||||
|
||||
def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8):
|
||||
if attn_impl == 'flash':
|
||||
return None
|
||||
elif attn_impl in ['torch', 'triton']:
|
||||
if alibi:
|
||||
(device, dtype) = (attn_bias.device, attn_bias.dtype)
|
||||
attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype))
|
||||
return attn_bias
|
||||
else:
|
||||
raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.')
|
||||
|
||||
def gen_slopes(n_heads, alibi_bias_max=8, device=None):
|
||||
_n_heads = 2 ** math.ceil(math.log2(n_heads))
|
||||
m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device)
|
||||
m = m.mul(alibi_bias_max / _n_heads)
|
||||
slopes = 1.0 / torch.pow(2, m)
|
||||
if _n_heads != n_heads:
|
||||
slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads]
|
||||
return slopes.view(1, n_heads, 1, 1)
|
||||
|
||||
def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None):
|
||||
alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len)
|
||||
if full:
|
||||
alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1)
|
||||
alibi_bias = alibi_bias.abs().mul(-1)
|
||||
slopes = gen_slopes(n_heads, alibi_bias_max, device=device)
|
||||
alibi_bias = alibi_bias * slopes
|
||||
return alibi_bias.to(dtype=dtype)
|
||||
ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention}
|
41
models/LLaVA/build/lib/llava/model/mpt/blocks.py
Normal file
41
models/LLaVA/build/lib/llava/model/mpt/blocks.py
Normal file
@@ -0,0 +1,41 @@
|
||||
"""GPT Blocks used for the GPT Model."""
|
||||
from typing import Dict, Optional, Tuple
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from .attention import ATTN_CLASS_REGISTRY
|
||||
from .norm import NORM_CLASS_REGISTRY
|
||||
|
||||
class MPTMLP(nn.Module):
|
||||
|
||||
def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None):
|
||||
super().__init__()
|
||||
self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device)
|
||||
self.act = nn.GELU(approximate='none')
|
||||
self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device)
|
||||
self.down_proj._is_residual = True
|
||||
|
||||
def forward(self, x):
|
||||
return self.down_proj(self.act(self.up_proj(x)))
|
||||
|
||||
class MPTBlock(nn.Module):
|
||||
|
||||
def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', device: Optional[str]=None, **kwargs):
|
||||
del kwargs
|
||||
super().__init__()
|
||||
norm_class = NORM_CLASS_REGISTRY[norm_type.lower()]
|
||||
attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']]
|
||||
self.norm_1 = norm_class(d_model, device=device)
|
||||
self.attn = attn_class(attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads, device=device)
|
||||
self.norm_2 = norm_class(d_model, device=device)
|
||||
self.ffn = MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, device=device)
|
||||
self.resid_attn_dropout = nn.Dropout(resid_pdrop)
|
||||
self.resid_ffn_dropout = nn.Dropout(resid_pdrop)
|
||||
|
||||
def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]:
|
||||
a = self.norm_1(x)
|
||||
(b, _, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal)
|
||||
x = x + self.resid_attn_dropout(b)
|
||||
m = self.norm_2(x)
|
||||
n = self.ffn(m)
|
||||
x = x + self.resid_ffn_dropout(n)
|
||||
return (x, past_key_value)
|
118
models/LLaVA/build/lib/llava/model/mpt/configuration_mpt.py
Normal file
118
models/LLaVA/build/lib/llava/model/mpt/configuration_mpt.py
Normal file
@@ -0,0 +1,118 @@
|
||||
"""A HuggingFace-style model configuration."""
|
||||
from typing import Dict, Optional, Union
|
||||
from transformers import PretrainedConfig
|
||||
attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}
|
||||
init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu'}
|
||||
|
||||
class MPTConfig(PretrainedConfig):
|
||||
model_type = 'mpt'
|
||||
|
||||
def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, verbose: int=0, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, **kwargs):
|
||||
"""The MPT configuration class.
|
||||
|
||||
Args:
|
||||
d_model (int): The size of the embedding dimension of the model.
|
||||
n_heads (int): The number of attention heads.
|
||||
n_layers (int): The number of layers in the model.
|
||||
expansion_ratio (int): The ratio of the up/down scale in the MLP.
|
||||
max_seq_len (int): The maximum sequence length of the model.
|
||||
vocab_size (int): The size of the vocabulary.
|
||||
resid_pdrop (float): The dropout probability applied to the attention output before combining with residual.
|
||||
emb_pdrop (float): The dropout probability for the embedding layer.
|
||||
learned_pos_emb (bool): Whether to use learned positional embeddings
|
||||
attn_config (Dict): A dictionary used to configure the model's attention module:
|
||||
attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention
|
||||
attn_pdrop (float): The dropout probability for the attention layers.
|
||||
attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'.
|
||||
qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer.
|
||||
clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to
|
||||
this value.
|
||||
softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None,
|
||||
use the default scale of ``1/sqrt(d_keys)``.
|
||||
prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an
|
||||
extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix
|
||||
can attend to one another bi-directionally. Tokens outside the prefix use causal attention.
|
||||
attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id.
|
||||
When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates
|
||||
which sub-sequence each token belongs to.
|
||||
Defaults to ``False`` meaning any provided `sequence_id` will be ignored.
|
||||
alibi (bool): Whether to use the alibi bias instead of position embeddings.
|
||||
alibi_bias_max (int): The maximum value of the alibi bias.
|
||||
init_device (str): The device to use for parameter initialization.
|
||||
logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value.
|
||||
no_bias (bool): Whether to use bias in all layers.
|
||||
verbose (int): The verbosity level. 0 is silent.
|
||||
embedding_fraction (float): The fraction to scale the gradients of the embedding layer by.
|
||||
norm_type (str): choose type of norm to use
|
||||
multiquery_attention (bool): Whether to use multiquery attention implementation.
|
||||
use_cache (bool): Whether or not the model should return the last key/values attentions
|
||||
init_config (Dict): A dictionary used to configure the model initialization:
|
||||
init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_',
|
||||
'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or
|
||||
'xavier_normal_'. These mimic the parameter initialization methods in PyTorch.
|
||||
init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True.
|
||||
emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer.
|
||||
emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution
|
||||
used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``.
|
||||
init_std (float): The standard deviation of the normal distribution used to initialize the model,
|
||||
if using the baseline_ parameter initialization scheme.
|
||||
init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes.
|
||||
fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes.
|
||||
init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes.
|
||||
---
|
||||
See llmfoundry.models.utils.param_init_fns.py for info on other param init config options
|
||||
"""
|
||||
self.d_model = d_model
|
||||
self.n_heads = n_heads
|
||||
self.n_layers = n_layers
|
||||
self.expansion_ratio = expansion_ratio
|
||||
self.max_seq_len = max_seq_len
|
||||
self.vocab_size = vocab_size
|
||||
self.resid_pdrop = resid_pdrop
|
||||
self.emb_pdrop = emb_pdrop
|
||||
self.learned_pos_emb = learned_pos_emb
|
||||
self.attn_config = attn_config
|
||||
self.init_device = init_device
|
||||
self.logit_scale = logit_scale
|
||||
self.no_bias = no_bias
|
||||
self.verbose = verbose
|
||||
self.embedding_fraction = embedding_fraction
|
||||
self.norm_type = norm_type
|
||||
self.use_cache = use_cache
|
||||
self.init_config = init_config
|
||||
if 'name' in kwargs:
|
||||
del kwargs['name']
|
||||
if 'loss_fn' in kwargs:
|
||||
del kwargs['loss_fn']
|
||||
super().__init__(**kwargs)
|
||||
self._validate_config()
|
||||
|
||||
def _set_config_defaults(self, config, config_defaults):
|
||||
for (k, v) in config_defaults.items():
|
||||
if k not in config:
|
||||
config[k] = v
|
||||
return config
|
||||
|
||||
def _validate_config(self):
|
||||
self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults)
|
||||
self.init_config = self._set_config_defaults(self.init_config, init_config_defaults)
|
||||
if self.d_model % self.n_heads != 0:
|
||||
raise ValueError('d_model must be divisible by n_heads')
|
||||
if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])):
|
||||
raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1")
|
||||
if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']:
|
||||
raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}")
|
||||
if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
||||
raise NotImplementedError('prefix_lm only implemented with torch and triton attention.')
|
||||
if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
||||
raise NotImplementedError('alibi only implemented with torch and triton attention.')
|
||||
if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']:
|
||||
raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.')
|
||||
if self.embedding_fraction > 1 or self.embedding_fraction <= 0:
|
||||
raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!')
|
||||
if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model':
|
||||
raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
||||
if self.init_config.get('name', None) is None:
|
||||
raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.")
|
||||
if not self.learned_pos_emb and (not self.attn_config['alibi']):
|
||||
raise ValueError(f'Positional information must be provided to the model using either learned_pos_emb or alibi.')
|
415
models/LLaVA/build/lib/llava/model/mpt/hf_prefixlm_converter.py
Normal file
415
models/LLaVA/build/lib/llava/model/mpt/hf_prefixlm_converter.py
Normal file
@@ -0,0 +1,415 @@
|
||||
"""Converts Huggingface Causal LM to Prefix LM.
|
||||
|
||||
Conversion does lightweight surgery on a HuggingFace
|
||||
Causal LM to convert it to a Prefix LM.
|
||||
|
||||
Prefix LMs accepts a `bidirectional_mask` input in `forward`
|
||||
and treat the input prompt as the prefix in `generate`.
|
||||
"""
|
||||
import math
|
||||
import warnings
|
||||
from types import MethodType
|
||||
from typing import Any, Dict, List, Optional, Tuple, Union
|
||||
import torch
|
||||
from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss
|
||||
from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom
|
||||
from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom
|
||||
from transformers.models.bloom.modeling_bloom import logging
|
||||
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
|
||||
from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM
|
||||
from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM
|
||||
from transformers.models.gptj.modeling_gptj import GPTJForCausalLM
|
||||
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
||||
from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt
|
||||
from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt
|
||||
logger = logging.get_logger(__name__)
|
||||
_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM)
|
||||
CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM]
|
||||
|
||||
def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES:
|
||||
"""Converts a GPT-style Causal LM to a Prefix LM.
|
||||
|
||||
Supported HuggingFace model classes:
|
||||
- `GPT2LMHeadModel`
|
||||
- `GPTNeoForCausalLM`
|
||||
- `GPTNeoXForCausalLM`
|
||||
- `GPTJForCausalLM`
|
||||
|
||||
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
||||
"""
|
||||
if hasattr(model, '_prefix_lm_converted'):
|
||||
return model
|
||||
assert isinstance(model, _SUPPORTED_GPT_MODELS)
|
||||
assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models'
|
||||
|
||||
def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]:
|
||||
"""Helper that gets a list of the model's attention modules.
|
||||
|
||||
Each module has a `bias` buffer used for causal masking. The Prefix LM
|
||||
conversion adds logic to dynamically manipulate these biases to support
|
||||
Prefix LM attention masking.
|
||||
"""
|
||||
attn_modules = []
|
||||
if isinstance(model, GPTNeoXForCausalLM):
|
||||
blocks = model.gpt_neox.layers
|
||||
else:
|
||||
blocks = model.transformer.h
|
||||
for block in blocks:
|
||||
if isinstance(model, GPTNeoForCausalLM):
|
||||
if block.attn.attention_type != 'global':
|
||||
continue
|
||||
attn_module = block.attn.attention
|
||||
elif isinstance(model, GPTNeoXForCausalLM):
|
||||
attn_module = block.attention
|
||||
else:
|
||||
attn_module = block.attn
|
||||
attn_modules.append(attn_module)
|
||||
return attn_modules
|
||||
setattr(model, '_original_forward', getattr(model, 'forward'))
|
||||
setattr(model, '_original_generate', getattr(model, 'generate'))
|
||||
|
||||
def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
||||
"""Wraps original forward to enable PrefixLM attention."""
|
||||
|
||||
def call_og_forward():
|
||||
if isinstance(self, GPTNeoXForCausalLM):
|
||||
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
||||
else:
|
||||
return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
||||
if bidirectional_mask is None:
|
||||
return call_og_forward()
|
||||
assert isinstance(bidirectional_mask, torch.Tensor)
|
||||
attn_modules = _get_attn_modules(model)
|
||||
(b, s) = bidirectional_mask.shape
|
||||
max_length = attn_modules[0].bias.shape[-1]
|
||||
if s > max_length:
|
||||
raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).')
|
||||
assert s <= max_length
|
||||
if s < max_length:
|
||||
pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device)
|
||||
bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1)
|
||||
bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1)
|
||||
for attn_module in attn_modules:
|
||||
attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional)
|
||||
output = call_og_forward()
|
||||
for attn_module in attn_modules:
|
||||
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
||||
return output
|
||||
|
||||
def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]):
|
||||
"""Wraps original generate to enable PrefixLM attention."""
|
||||
attn_modules = _get_attn_modules(model)
|
||||
for attn_module in attn_modules:
|
||||
attn_module.bias.data[:] = 1
|
||||
output = self._original_generate(*args, **kwargs)
|
||||
for attn_module in attn_modules:
|
||||
attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None]
|
||||
return output
|
||||
setattr(model, 'forward', MethodType(forward, model))
|
||||
setattr(model, 'generate', MethodType(generate, model))
|
||||
setattr(model, '_prefix_lm_converted', True)
|
||||
return model
|
||||
|
||||
def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM:
|
||||
"""Converts a BLOOM Causal LM to a Prefix LM.
|
||||
|
||||
Supported HuggingFace model classes:
|
||||
- `BloomForCausalLM`
|
||||
|
||||
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
||||
"""
|
||||
if hasattr(model, '_prefix_lm_converted'):
|
||||
return model
|
||||
assert isinstance(model, BloomForCausalLM)
|
||||
assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models'
|
||||
|
||||
def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor:
|
||||
combined_attention_mask = None
|
||||
device = attention_mask.device
|
||||
(_, src_length) = input_shape
|
||||
if src_length > 1:
|
||||
combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length)
|
||||
if bidirectional_mask is not None:
|
||||
assert attention_mask.shape == bidirectional_mask.shape
|
||||
expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length)
|
||||
combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask)
|
||||
expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length)
|
||||
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask
|
||||
return combined_attention_mask
|
||||
|
||||
def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor:
|
||||
num_heads = self.config.n_head
|
||||
closest_power_of_2 = 2 ** math.floor(math.log2(num_heads))
|
||||
base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
||||
powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32)
|
||||
slopes = torch.pow(base, powers)
|
||||
if closest_power_of_2 != num_heads:
|
||||
extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32)
|
||||
num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2)
|
||||
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32)
|
||||
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
||||
qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1)
|
||||
ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1)
|
||||
diffs = qa - ka + key_length - query_length
|
||||
diffs = -diffs.abs()
|
||||
alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length)
|
||||
alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length)
|
||||
return alibi.to(dtype)
|
||||
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]:
|
||||
if deprecated_arguments.pop('position_ids', False) is not False:
|
||||
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
||||
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
||||
output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
if input_ids is not None and inputs_embeds is not None:
|
||||
raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time')
|
||||
elif input_ids is not None:
|
||||
(batch_size, seq_length) = input_ids.shape
|
||||
elif inputs_embeds is not None:
|
||||
(batch_size, seq_length, _) = inputs_embeds.shape
|
||||
else:
|
||||
raise ValueError('You have to specify either input_ids or inputs_embeds')
|
||||
if past_key_values is None:
|
||||
past_key_values = tuple([None] * len(self.h))
|
||||
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
||||
if inputs_embeds is None:
|
||||
inputs_embeds = self.word_embeddings(input_ids)
|
||||
hidden_states = self.word_embeddings_layernorm(inputs_embeds)
|
||||
presents = () if use_cache else None
|
||||
all_self_attentions = () if output_attentions else None
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
seq_length_with_past = seq_length
|
||||
past_key_values_length = 0
|
||||
if past_key_values[0] is not None:
|
||||
tmp = past_key_values[0][0]
|
||||
past_key_values_length = tmp.shape[2]
|
||||
seq_length_with_past = seq_length_with_past + past_key_values_length
|
||||
if attention_mask is None:
|
||||
attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device)
|
||||
else:
|
||||
attention_mask = attention_mask.to(hidden_states.device)
|
||||
alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device)
|
||||
causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length)
|
||||
for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)):
|
||||
if output_hidden_states:
|
||||
hst = (hidden_states,)
|
||||
all_hidden_states = all_hidden_states + hst
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...')
|
||||
use_cache = False
|
||||
|
||||
def create_custom_forward(module):
|
||||
|
||||
def custom_forward(*inputs):
|
||||
return module(*inputs, use_cache=use_cache, output_attentions=output_attentions)
|
||||
return custom_forward
|
||||
outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i])
|
||||
else:
|
||||
outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi)
|
||||
hidden_states = outputs[0]
|
||||
if use_cache is True:
|
||||
presents = presents + (outputs[1],)
|
||||
if output_attentions:
|
||||
oa = (outputs[2 if use_cache else 1],)
|
||||
all_self_attentions = all_self_attentions + oa
|
||||
hidden_states = self.ln_f(hidden_states)
|
||||
if output_hidden_states:
|
||||
hst = (hidden_states,)
|
||||
all_hidden_states = all_hidden_states + hst
|
||||
if not return_dict:
|
||||
return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None))
|
||||
return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions)
|
||||
setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer))
|
||||
setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer))
|
||||
setattr(model.transformer, 'forward', MethodType(forward, model.transformer))
|
||||
KeyValueT = Tuple[torch.Tensor, torch.Tensor]
|
||||
|
||||
def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
|
||||
"""Replacement forward method for BloomCausalLM."""
|
||||
if deprecated_arguments.pop('position_ids', False) is not False:
|
||||
warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning)
|
||||
if len(deprecated_arguments) > 0:
|
||||
raise ValueError(f'Got unexpected arguments: {deprecated_arguments}')
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
||||
hidden_states = transformer_outputs[0]
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
loss = None
|
||||
if labels is not None:
|
||||
shift_logits = lm_logits[..., :-1, :].contiguous()
|
||||
shift_labels = labels[..., 1:].contiguous()
|
||||
(batch_size, seq_length, vocab_size) = shift_logits.shape
|
||||
loss_fct = CrossEntropyLoss()
|
||||
loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length))
|
||||
if not return_dict:
|
||||
output = (lm_logits,) + transformer_outputs[1:]
|
||||
return (loss,) + output if loss is not None else output
|
||||
return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions)
|
||||
|
||||
def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict:
|
||||
if past:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
bidirectional_mask = None
|
||||
if past[0][0].shape[0] == input_ids.shape[0]:
|
||||
past = self._convert_to_bloom_cache(past)
|
||||
else:
|
||||
bidirectional_mask = torch.ones_like(input_ids)
|
||||
return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask}
|
||||
setattr(model, 'forward', MethodType(forward, model))
|
||||
setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model))
|
||||
setattr(model, '_prefix_lm_converted', True)
|
||||
return model
|
||||
|
||||
def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM:
|
||||
"""Converts an OPT Causal LM to a Prefix LM.
|
||||
|
||||
Supported HuggingFace model classes:
|
||||
- `OPTForCausalLM`
|
||||
|
||||
See `convert_hf_causal_lm_to_prefix_lm` for more details.
|
||||
"""
|
||||
if hasattr(model, '_prefix_lm_converted'):
|
||||
return model
|
||||
assert isinstance(model, OPTForCausalLM)
|
||||
assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models'
|
||||
setattr(model, '_original_forward', getattr(model, 'forward'))
|
||||
setattr(model, '_original_generate', getattr(model, 'generate'))
|
||||
model.model.decoder.bidirectional_mask = None
|
||||
|
||||
def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
|
||||
combined_attention_mask = None
|
||||
if input_shape[-1] > 1:
|
||||
if self.bidirectional_mask == 'g':
|
||||
(bsz, src_length) = input_shape
|
||||
combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device)
|
||||
else:
|
||||
combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device)
|
||||
if self.bidirectional_mask is not None:
|
||||
assert attention_mask.shape == self.bidirectional_mask.shape
|
||||
expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
||||
combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask)
|
||||
if attention_mask is not None:
|
||||
expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device)
|
||||
combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
|
||||
return combined_attention_mask
|
||||
setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder))
|
||||
|
||||
def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None):
|
||||
|
||||
def call_og_forward():
|
||||
return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
||||
if bidirectional_mask is None:
|
||||
return call_og_forward()
|
||||
self.model.decoder.bidirectional_mask = bidirectional_mask
|
||||
try:
|
||||
outputs = call_og_forward()
|
||||
except:
|
||||
self.model.decoder.bidirectional_mask = None
|
||||
raise
|
||||
self.model.decoder.bidirectional_mask = None
|
||||
return outputs
|
||||
|
||||
def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]):
|
||||
"""Wraps original generate to enable PrefixLM-style attention."""
|
||||
self.model.decoder.bidirectional_mask = 'g'
|
||||
try:
|
||||
output = self._original_generate(*args, **kwargs)
|
||||
except:
|
||||
self.model.decoder.bidirectional_mask = None
|
||||
raise
|
||||
self.model.decoder.bidirectional_mask = None
|
||||
return output
|
||||
setattr(model, 'forward', MethodType(forward, model))
|
||||
setattr(model, 'generate', MethodType(generate, model))
|
||||
setattr(model, '_prefix_lm_converted', True)
|
||||
return model
|
||||
_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM)
|
||||
CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM]
|
||||
|
||||
def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES:
|
||||
"""Converts a HuggingFace Causal LM to a Prefix LM.
|
||||
|
||||
Supported HuggingFace model classes:
|
||||
- `GPT2LMHeadModel`
|
||||
- `GPTNeoForCausalLM`
|
||||
- `GPTNeoXForCausalLM`
|
||||
- `GPTJForCausalLM`
|
||||
- `BloomForCausalLM`
|
||||
- `OPTForCausalLM`
|
||||
|
||||
Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the
|
||||
`generate` method and/or select underlying methods depending on the model class.
|
||||
|
||||
These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask".
|
||||
|
||||
Notes on training:
|
||||
To actually train the converted model as a Prefix LM, training batches will need to indicate
|
||||
the prefix/target structure by including `bidirectional_mask` as part of the batch inputs.
|
||||
|
||||
**This is not a standard input and requires custom layers either within or after your dataloader.**
|
||||
|
||||
In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels`
|
||||
such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`.
|
||||
That is, the prefix portion of the sequence should not generate any loss. Loss should only be
|
||||
generated by the target portion of the sequence.
|
||||
|
||||
Notes on `GPTNeoForCausalLM`:
|
||||
To simplify the implementation, "global" and "local" attention layers are handled differently.
|
||||
For "global" layers, we handle conversion as described above. For "local" layers, which use a
|
||||
causal attention mask within a restricted local window, we do not alter the masking.
|
||||
|
||||
Notes on `forward` method conversion:
|
||||
After conversion, the `forward` method will handle a new input, `bidirectional_mask`,
|
||||
which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions
|
||||
belonging to the prefix (prefix tokens can attend to one another bidirectionally), and
|
||||
0 indicates token positions belonging to the target.
|
||||
|
||||
The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing
|
||||
causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset
|
||||
the causal masks before returning the result.
|
||||
|
||||
Notes on `generate` method conversion:
|
||||
After conversion, the `generate` method will have the same signature but will internally
|
||||
convert all causal masks to be purely bidirectional, call the original `generate` method, and
|
||||
(where appropriate) reset the causal masks before returning the result.
|
||||
|
||||
This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token
|
||||
"prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates
|
||||
each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one
|
||||
another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and
|
||||
previously-generated tokens (also as expected in a Prefix LM).
|
||||
|
||||
To preserve the API, the original methods are renamed to `_original_forward` and
|
||||
`_original_generate`, and replaced with new `forward` and `generate` methods that wrap
|
||||
them, respectively. Although implementation details vary by model class.
|
||||
"""
|
||||
if isinstance(model, _SUPPORTED_GPT_MODELS):
|
||||
return _convert_gpt_causal_lm_to_prefix_lm(model)
|
||||
elif isinstance(model, BloomForCausalLM):
|
||||
return _convert_bloom_causal_lm_to_prefix_lm(model)
|
||||
elif isinstance(model, OPTForCausalLM):
|
||||
return _convert_opt_causal_lm_to_prefix_lm(model)
|
||||
else:
|
||||
raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}')
|
||||
|
||||
def add_bidirectional_mask_if_missing(batch: Dict[str, Any]):
|
||||
"""Attempts to add bidirectional_mask to batch if missing.
|
||||
|
||||
Raises:
|
||||
KeyError if bidirectional_mask is missing and can't be inferred
|
||||
"""
|
||||
if 'bidirectional_mask' not in batch:
|
||||
if batch.get('mode', None) == 'icl_task':
|
||||
batch['bidirectional_mask'] = batch['attention_mask'].clone()
|
||||
for (i, continuation_indices) in enumerate(batch['continuation_indices']):
|
||||
batch['bidirectional_mask'][i, continuation_indices] = 0
|
||||
elif 'labels' in batch and 'attention_mask' in batch:
|
||||
batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask'])
|
||||
else:
|
||||
raise KeyError('No bidirectional_mask in batch and not sure how to construct one.')
|
94
models/LLaVA/build/lib/llava/model/mpt/meta_init_context.py
Normal file
94
models/LLaVA/build/lib/llava/model/mpt/meta_init_context.py
Normal file
@@ -0,0 +1,94 @@
|
||||
from contextlib import contextmanager
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
@contextmanager
|
||||
def init_empty_weights(include_buffers: bool=False):
|
||||
"""Meta initialization context manager.
|
||||
|
||||
A context manager under which models are initialized with all parameters
|
||||
on the meta device, therefore creating an empty model. Useful when just
|
||||
initializing the model would blow the available RAM.
|
||||
|
||||
Args:
|
||||
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
||||
not to also put all buffers on the meta device while initializing.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch.nn as nn
|
||||
|
||||
# Initialize a model with 100 billions parameters in no time and without using any RAM.
|
||||
with init_empty_weights():
|
||||
tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)])
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Any model created under this context manager has no weights. As such you can't do something like
|
||||
`model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`].
|
||||
|
||||
</Tip>
|
||||
"""
|
||||
with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f:
|
||||
yield f
|
||||
|
||||
@contextmanager
|
||||
def init_on_device(device: torch.device, include_buffers: bool=False):
|
||||
"""Device initialization context manager.
|
||||
|
||||
A context manager under which models are initialized with all parameters
|
||||
on the specified device.
|
||||
|
||||
Args:
|
||||
device (`torch.device`): Device to initialize all parameters on.
|
||||
include_buffers (`bool`, *optional*, defaults to `False`): Whether or
|
||||
not to also put all buffers on the meta device while initializing.
|
||||
|
||||
Example:
|
||||
```python
|
||||
import torch.nn as nn
|
||||
|
||||
with init_on_device(device=torch.device("cuda")):
|
||||
tst = nn.Liner(100, 100) # on `cuda` device
|
||||
```
|
||||
"""
|
||||
old_register_parameter = nn.Module.register_parameter
|
||||
if include_buffers:
|
||||
old_register_buffer = nn.Module.register_buffer
|
||||
|
||||
def register_empty_parameter(module, name, param):
|
||||
old_register_parameter(module, name, param)
|
||||
if param is not None:
|
||||
param_cls = type(module._parameters[name])
|
||||
kwargs = module._parameters[name].__dict__
|
||||
module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs)
|
||||
|
||||
def register_empty_buffer(module, name, buffer):
|
||||
old_register_buffer(module, name, buffer)
|
||||
if buffer is not None:
|
||||
module._buffers[name] = module._buffers[name].to(device)
|
||||
if include_buffers:
|
||||
tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']}
|
||||
else:
|
||||
tensor_constructors_to_patch = {}
|
||||
|
||||
def patch_tensor_constructor(fn):
|
||||
|
||||
def wrapper(*args, **kwargs):
|
||||
kwargs['device'] = device
|
||||
return fn(*args, **kwargs)
|
||||
return wrapper
|
||||
try:
|
||||
nn.Module.register_parameter = register_empty_parameter
|
||||
if include_buffers:
|
||||
nn.Module.register_buffer = register_empty_buffer
|
||||
for torch_function_name in tensor_constructors_to_patch.keys():
|
||||
setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name)))
|
||||
yield
|
||||
finally:
|
||||
nn.Module.register_parameter = old_register_parameter
|
||||
if include_buffers:
|
||||
nn.Module.register_buffer = old_register_buffer
|
||||
for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items():
|
||||
setattr(torch, torch_function_name, old_torch_function)
|
311
models/LLaVA/build/lib/llava/model/mpt/modeling_mpt.py
Normal file
311
models/LLaVA/build/lib/llava/model/mpt/modeling_mpt.py
Normal file
@@ -0,0 +1,311 @@
|
||||
"""A simple, flexible implementation of a GPT model.
|
||||
|
||||
Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py
|
||||
"""
|
||||
import math
|
||||
import warnings
|
||||
from typing import List, Optional, Tuple, Union
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast
|
||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||
from .attention import attn_bias_shape, build_attn_bias
|
||||
from .blocks import MPTBlock
|
||||
from .norm import NORM_CLASS_REGISTRY
|
||||
from .configuration_mpt import MPTConfig
|
||||
from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising
|
||||
from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm
|
||||
from .meta_init_context import init_empty_weights
|
||||
from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_
|
||||
Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
|
||||
|
||||
from transformers.utils import logging
|
||||
logger = logging.get_logger(__name__)
|
||||
|
||||
class MPTPreTrainedModel(PreTrainedModel):
|
||||
config_class = MPTConfig
|
||||
base_model_prefix = 'model'
|
||||
|
||||
class MPTModel(MPTPreTrainedModel):
|
||||
|
||||
def __init__(self, config: MPTConfig):
|
||||
config._validate_config()
|
||||
super().__init__(config)
|
||||
self.attn_impl = config.attn_config['attn_impl']
|
||||
self.prefix_lm = config.attn_config['prefix_lm']
|
||||
self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id']
|
||||
self.alibi = config.attn_config['alibi']
|
||||
self.alibi_bias_max = config.attn_config['alibi_bias_max']
|
||||
if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys():
|
||||
norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys())
|
||||
raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).')
|
||||
norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()]
|
||||
self.embedding_fraction = config.embedding_fraction
|
||||
self.wte = nn.Embedding(config.vocab_size, config.d_model, device=config.init_device)
|
||||
if not self.alibi:
|
||||
self.wpe = nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device)
|
||||
self.emb_drop = nn.Dropout(config.emb_pdrop)
|
||||
self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)])
|
||||
self.norm_f = norm_class(config.d_model, device=config.init_device)
|
||||
if config.init_device != 'meta':
|
||||
self.apply(self.param_init_fn)
|
||||
self.is_causal = not self.prefix_lm
|
||||
self._attn_bias_initialized = False
|
||||
self.attn_bias = None
|
||||
self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id)
|
||||
if config.no_bias:
|
||||
for module in self.modules():
|
||||
if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter):
|
||||
if config.verbose:
|
||||
warnings.warn(f'Removing bias ({module.bias}) from {module}.')
|
||||
module.register_parameter('bias', None)
|
||||
if config.verbose and config.verbose > 2:
|
||||
print(self)
|
||||
if 'verbose' not in self.config.init_config:
|
||||
self.config.init_config['verbose'] = self.config.verbose
|
||||
if self.config.init_config['verbose'] > 1:
|
||||
init_fn_name = self.config.init_config['name']
|
||||
warnings.warn(f'Using {init_fn_name} initialization.')
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.wte
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.wte = value
|
||||
|
||||
@torch.no_grad()
|
||||
def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None):
|
||||
if not self._attn_bias_initialized:
|
||||
if self.attn_bias_shape:
|
||||
self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype)
|
||||
self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max)
|
||||
self._attn_bias_initialized = True
|
||||
if self.attn_impl == 'flash':
|
||||
return (self.attn_bias, attention_mask)
|
||||
if self.attn_bias is not None:
|
||||
self.attn_bias = self.attn_bias.to(dtype=dtype, device=device)
|
||||
attn_bias = self.attn_bias
|
||||
if self.prefix_lm:
|
||||
assert isinstance(attn_bias, torch.Tensor)
|
||||
assert isinstance(prefix_mask, torch.Tensor)
|
||||
attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask)
|
||||
if self.attn_uses_sequence_id and sequence_id is not None:
|
||||
assert isinstance(attn_bias, torch.Tensor)
|
||||
attn_bias = self._apply_sequence_id(attn_bias, sequence_id)
|
||||
if attention_mask is not None:
|
||||
s_k = attention_mask.shape[-1]
|
||||
if attn_bias is None:
|
||||
attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype)
|
||||
else:
|
||||
attn_bias = attn_bias[:, :, :, -s_k:]
|
||||
if prefix_mask is not None and attention_mask.shape != prefix_mask.shape:
|
||||
raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.')
|
||||
min_val = torch.finfo(attn_bias.dtype).min
|
||||
attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val)
|
||||
return (attn_bias, None)
|
||||
|
||||
def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor):
|
||||
(s_k, s_q) = attn_bias.shape[-2:]
|
||||
if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len:
|
||||
raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.')
|
||||
seq_len = prefix_mask.shape[-1]
|
||||
if seq_len > self.config.max_seq_len:
|
||||
raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
||||
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
||||
causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len)
|
||||
prefix = prefix_mask.view(-1, 1, 1, seq_len)
|
||||
cannot_attend = ~torch.logical_or(causal, prefix.bool())
|
||||
min_val = torch.finfo(attn_bias.dtype).min
|
||||
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
||||
return attn_bias
|
||||
|
||||
def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor):
|
||||
seq_len = sequence_id.shape[-1]
|
||||
if seq_len > self.config.max_seq_len:
|
||||
raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}')
|
||||
attn_bias = attn_bias[..., :seq_len, :seq_len]
|
||||
cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1)
|
||||
min_val = torch.finfo(attn_bias.dtype).min
|
||||
attn_bias = attn_bias.masked_fill(cannot_attend, min_val)
|
||||
return attn_bias
|
||||
|
||||
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, tok_emb: Optional[torch.FloatTensor]=None):
|
||||
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
logger.warning_once(
|
||||
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
||||
)
|
||||
use_cache = False
|
||||
if attention_mask is not None:
|
||||
attention_mask = attention_mask.bool()
|
||||
if prefix_mask is not None:
|
||||
prefix_mask = prefix_mask.bool()
|
||||
if not return_dict:
|
||||
raise NotImplementedError('return_dict False is not implemented yet for MPT')
|
||||
if output_attentions:
|
||||
raise NotImplementedError('output_attentions is not implemented yet for MPT')
|
||||
if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training:
|
||||
raise NotImplementedError('MPT does not support training with left padding.')
|
||||
if self.prefix_lm and prefix_mask is None:
|
||||
raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.')
|
||||
if self.training:
|
||||
if self.attn_uses_sequence_id and sequence_id is None:
|
||||
raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.')
|
||||
elif self.attn_uses_sequence_id is False and sequence_id is not None:
|
||||
warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.')
|
||||
if input_ids is not None:
|
||||
S = input_ids.size(1)
|
||||
assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}'
|
||||
tok_emb = self.wte(input_ids)
|
||||
else:
|
||||
assert tok_emb is not None
|
||||
S = tok_emb.size(1)
|
||||
if self.alibi:
|
||||
x = tok_emb
|
||||
else:
|
||||
past_position = 0
|
||||
if past_key_values is not None:
|
||||
if len(past_key_values) != self.config.n_layers:
|
||||
raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).')
|
||||
past_position = past_key_values[0][0].size(1)
|
||||
if S + past_position > self.config.max_seq_len:
|
||||
raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.')
|
||||
pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0)
|
||||
if attention_mask is not None:
|
||||
pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0)
|
||||
pos_emb = self.wpe(pos)
|
||||
x = tok_emb + pos_emb
|
||||
if self.embedding_fraction == 1:
|
||||
x = self.emb_drop(x)
|
||||
else:
|
||||
x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction)
|
||||
assert isinstance(self.emb_drop, nn.Module)
|
||||
x = self.emb_drop(x_shrunk)
|
||||
(attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=x.dtype, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id)
|
||||
if use_cache and past_key_values is None:
|
||||
past_key_values = [() for _ in range(self.config.n_layers)]
|
||||
all_hidden_states = () if output_hidden_states else None
|
||||
for (b_idx, block) in enumerate(self.blocks):
|
||||
if output_hidden_states:
|
||||
assert all_hidden_states is not None
|
||||
all_hidden_states = all_hidden_states + (x,)
|
||||
past_key_value = past_key_values[b_idx] if past_key_values is not None else None
|
||||
if self.gradient_checkpointing and self.training:
|
||||
(x, past_key_value) = torch.utils.checkpoint.checkpoint(
|
||||
block,
|
||||
x, past_key_value, attn_bias, attention_mask, self.is_causal
|
||||
)
|
||||
else:
|
||||
(x, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal)
|
||||
if past_key_values is not None:
|
||||
past_key_values[b_idx] = past_key_value
|
||||
x = self.norm_f(x)
|
||||
return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states)
|
||||
|
||||
def param_init_fn(self, module):
|
||||
init_fn_name = self.config.init_config['name']
|
||||
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
||||
|
||||
def fsdp_wrap_fn(self, module):
|
||||
return isinstance(module, MPTBlock)
|
||||
|
||||
def activation_checkpointing_fn(self, module):
|
||||
return isinstance(module, MPTBlock)
|
||||
|
||||
class MPTForCausalLM(MPTPreTrainedModel):
|
||||
|
||||
def __init__(self, config: MPTConfig):
|
||||
super().__init__(config)
|
||||
if not config.tie_word_embeddings:
|
||||
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
||||
self.transformer = MPTModel(config)
|
||||
self.logit_scale = None
|
||||
if config.logit_scale is not None:
|
||||
logit_scale = config.logit_scale
|
||||
if isinstance(logit_scale, str):
|
||||
if logit_scale == 'inv_sqrt_d_model':
|
||||
logit_scale = 1 / math.sqrt(config.d_model)
|
||||
else:
|
||||
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
||||
self.logit_scale = logit_scale
|
||||
|
||||
def get_input_embeddings(self):
|
||||
return self.transformer.wte
|
||||
|
||||
def set_input_embeddings(self, value):
|
||||
self.transformer.wte = value
|
||||
|
||||
def get_output_embeddings(self):
|
||||
return self.transformer.wte
|
||||
|
||||
def set_output_embeddings(self, new_embeddings):
|
||||
self.transformer.wte = new_embeddings
|
||||
|
||||
def set_decoder(self, decoder):
|
||||
self.transformer = decoder
|
||||
|
||||
def get_decoder(self):
|
||||
return self.transformer
|
||||
|
||||
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None):
|
||||
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache)
|
||||
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
|
||||
if self.logit_scale is not None:
|
||||
if self.logit_scale == 0:
|
||||
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
||||
logits *= self.logit_scale
|
||||
loss = None
|
||||
if labels is not None:
|
||||
labels = torch.roll(labels, shifts=-1)
|
||||
labels[:, -1] = -100
|
||||
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
||||
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
|
||||
|
||||
def param_init_fn(self, module):
|
||||
init_fn_name = self.config.init_config['name']
|
||||
MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config)
|
||||
|
||||
def fsdp_wrap_fn(self, module):
|
||||
return isinstance(module, MPTBlock)
|
||||
|
||||
def activation_checkpointing_fn(self, module):
|
||||
return isinstance(module, MPTBlock)
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
||||
if inputs_embeds is not None:
|
||||
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
||||
attention_mask = kwargs['attention_mask'].bool()
|
||||
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
||||
raise NotImplementedError('MPT does not support generation with right padding.')
|
||||
if self.transformer.attn_uses_sequence_id and self.training:
|
||||
sequence_id = torch.zeros_like(input_ids[:1])
|
||||
else:
|
||||
sequence_id = None
|
||||
if past_key_values is not None:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
if self.transformer.prefix_lm:
|
||||
prefix_mask = torch.ones_like(attention_mask)
|
||||
if kwargs.get('use_cache') == False:
|
||||
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
||||
else:
|
||||
prefix_mask = None
|
||||
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)}
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past_key_values, beam_idx):
|
||||
"""Used by HuggingFace generate when using beam search with kv-caching.
|
||||
|
||||
See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133
|
||||
for an example in transformers.
|
||||
"""
|
||||
reordered_past = []
|
||||
for layer_past in past_key_values:
|
||||
reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))]
|
||||
return reordered_past
|
56
models/LLaVA/build/lib/llava/model/mpt/norm.py
Normal file
56
models/LLaVA/build/lib/llava/model/mpt/norm.py
Normal file
@@ -0,0 +1,56 @@
|
||||
import torch
|
||||
|
||||
def _cast_if_autocast_enabled(tensor):
|
||||
if torch.is_autocast_enabled():
|
||||
if tensor.device.type == 'cuda':
|
||||
dtype = torch.get_autocast_gpu_dtype()
|
||||
elif tensor.device.type == 'cpu':
|
||||
dtype = torch.get_autocast_cpu_dtype()
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
return tensor.to(dtype=dtype)
|
||||
return tensor
|
||||
|
||||
class LPLayerNorm(torch.nn.LayerNorm):
|
||||
|
||||
def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None):
|
||||
super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype)
|
||||
|
||||
def forward(self, x):
|
||||
module_device = x.device
|
||||
downcast_x = _cast_if_autocast_enabled(x)
|
||||
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
||||
downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias
|
||||
with torch.autocast(enabled=False, device_type=module_device.type):
|
||||
return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps)
|
||||
|
||||
def rms_norm(x, weight=None, eps=1e-05):
|
||||
output = x / torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps)
|
||||
if weight is not None:
|
||||
return output * weight
|
||||
return output
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
|
||||
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.eps = eps
|
||||
if weight:
|
||||
self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device))
|
||||
else:
|
||||
self.register_parameter('weight', None)
|
||||
|
||||
def forward(self, x):
|
||||
return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype)
|
||||
|
||||
class LPRMSNorm(RMSNorm):
|
||||
|
||||
def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None):
|
||||
super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x):
|
||||
downcast_x = _cast_if_autocast_enabled(x)
|
||||
downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight
|
||||
with torch.autocast(enabled=False, device_type=x.device.type):
|
||||
return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype)
|
||||
NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm}
|
181
models/LLaVA/build/lib/llava/model/mpt/param_init_fns.py
Normal file
181
models/LLaVA/build/lib/llava/model/mpt/param_init_fns.py
Normal file
@@ -0,0 +1,181 @@
|
||||
import math
|
||||
import warnings
|
||||
from collections.abc import Sequence
|
||||
from functools import partial
|
||||
from typing import Optional, Tuple, Union
|
||||
import torch
|
||||
from torch import nn
|
||||
from .norm import NORM_CLASS_REGISTRY
|
||||
|
||||
def torch_default_param_init_fn_(module: nn.Module, verbose: int=0, **kwargs):
|
||||
del kwargs
|
||||
if verbose > 1:
|
||||
warnings.warn(f"Initializing network using module's reset_parameters attribute")
|
||||
if hasattr(module, 'reset_parameters'):
|
||||
module.reset_parameters()
|
||||
|
||||
def fused_init_helper_(module: nn.Module, init_fn_):
|
||||
_fused = getattr(module, '_fused', None)
|
||||
if _fused is None:
|
||||
raise RuntimeError(f'Internal logic error')
|
||||
(dim, splits) = _fused
|
||||
splits = (0, *splits, module.weight.size(dim))
|
||||
for (s, e) in zip(splits[:-1], splits[1:]):
|
||||
slice_indices = [slice(None)] * module.weight.ndim
|
||||
slice_indices[dim] = slice(s, e)
|
||||
init_fn_(module.weight[slice_indices])
|
||||
|
||||
def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
||||
del kwargs
|
||||
if verbose > 1:
|
||||
warnings.warn(f'If model has bias parameters they are initialized to 0.')
|
||||
init_div_is_residual = init_div_is_residual
|
||||
if init_div_is_residual is False:
|
||||
div_is_residual = 1.0
|
||||
elif init_div_is_residual is True:
|
||||
div_is_residual = math.sqrt(2 * n_layers)
|
||||
elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int):
|
||||
div_is_residual = init_div_is_residual
|
||||
elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric():
|
||||
div_is_residual = float(init_div_is_residual)
|
||||
else:
|
||||
div_is_residual = 1.0
|
||||
raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}')
|
||||
if init_div_is_residual is not False:
|
||||
if verbose > 1:
|
||||
warnings.warn(f'Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. ' + f'Set `init_div_is_residual: false` in init config to disable this.')
|
||||
if isinstance(module, nn.Linear):
|
||||
if hasattr(module, '_fused'):
|
||||
fused_init_helper_(module, init_fn_)
|
||||
else:
|
||||
init_fn_(module.weight)
|
||||
if module.bias is not None:
|
||||
torch.nn.init.zeros_(module.bias)
|
||||
if init_div_is_residual is not False and getattr(module, '_is_residual', False):
|
||||
with torch.no_grad():
|
||||
module.weight.div_(div_is_residual)
|
||||
elif isinstance(module, nn.Embedding):
|
||||
if emb_init_std is not None:
|
||||
std = emb_init_std
|
||||
if std == 0:
|
||||
warnings.warn(f'Embedding layer initialized to 0.')
|
||||
emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std)
|
||||
if verbose > 1:
|
||||
warnings.warn(f'Embedding layer initialized using normal distribution with mean=0 and std={std!r}.')
|
||||
elif emb_init_uniform_lim is not None:
|
||||
lim = emb_init_uniform_lim
|
||||
if isinstance(lim, Sequence):
|
||||
if len(lim) > 2:
|
||||
raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.')
|
||||
if lim[0] == lim[1]:
|
||||
warnings.warn(f'Embedding layer initialized to {lim[0]}.')
|
||||
else:
|
||||
if lim == 0:
|
||||
warnings.warn(f'Embedding layer initialized to 0.')
|
||||
lim = [-lim, lim]
|
||||
(a, b) = lim
|
||||
emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b)
|
||||
if verbose > 1:
|
||||
warnings.warn(f'Embedding layer initialized using uniform distribution in range {lim}.')
|
||||
else:
|
||||
emb_init_fn_ = init_fn_
|
||||
emb_init_fn_(module.weight)
|
||||
elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))):
|
||||
if verbose > 1:
|
||||
warnings.warn(f'Norm weights are set to 1. If norm layer has a bias it is initialized to 0.')
|
||||
if hasattr(module, 'weight') and module.weight is not None:
|
||||
torch.nn.init.ones_(module.weight)
|
||||
if hasattr(module, 'bias') and module.bias is not None:
|
||||
torch.nn.init.zeros_(module.bias)
|
||||
elif isinstance(module, nn.MultiheadAttention):
|
||||
if module._qkv_same_embed_dim:
|
||||
assert module.in_proj_weight is not None
|
||||
assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None)
|
||||
assert d_model is not None
|
||||
_d = d_model
|
||||
splits = (0, _d, 2 * _d, 3 * _d)
|
||||
for (s, e) in zip(splits[:-1], splits[1:]):
|
||||
init_fn_(module.in_proj_weight[s:e])
|
||||
else:
|
||||
assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None)
|
||||
assert module.in_proj_weight is None
|
||||
init_fn_(module.q_proj_weight)
|
||||
init_fn_(module.k_proj_weight)
|
||||
init_fn_(module.v_proj_weight)
|
||||
if module.in_proj_bias is not None:
|
||||
torch.nn.init.zeros_(module.in_proj_bias)
|
||||
if module.bias_k is not None:
|
||||
torch.nn.init.zeros_(module.bias_k)
|
||||
if module.bias_v is not None:
|
||||
torch.nn.init.zeros_(module.bias_v)
|
||||
init_fn_(module.out_proj.weight)
|
||||
if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False):
|
||||
with torch.no_grad():
|
||||
module.out_proj.weight.div_(div_is_residual)
|
||||
if module.out_proj.bias is not None:
|
||||
torch.nn.init.zeros_(module.out_proj.bias)
|
||||
else:
|
||||
for _ in module.parameters(recurse=False):
|
||||
raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.')
|
||||
|
||||
def _normal_init_(std, mean=0.0):
|
||||
return partial(torch.nn.init.normal_, mean=mean, std=std)
|
||||
|
||||
def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
||||
del kwargs
|
||||
init_fn_ = _normal_init_(std=std)
|
||||
if verbose > 1:
|
||||
warnings.warn(f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}')
|
||||
generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
||||
|
||||
def baseline_param_init_fn_(module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
||||
del kwargs
|
||||
if init_std is None:
|
||||
raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.")
|
||||
_normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
||||
|
||||
def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
||||
del kwargs
|
||||
std = math.sqrt(2 / (5 * d_model))
|
||||
_normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
||||
|
||||
def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs):
|
||||
"""From section 2.3.1 of GPT-NeoX-20B:
|
||||
|
||||
An Open-Source AutoregressiveLanguage Model — Black et. al. (2022)
|
||||
see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151
|
||||
and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py
|
||||
"""
|
||||
del kwargs
|
||||
residual_div = n_layers / math.sqrt(10)
|
||||
if verbose > 1:
|
||||
warnings.warn(f'setting init_div_is_residual to {residual_div}')
|
||||
small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
||||
|
||||
def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
|
||||
del kwargs
|
||||
if verbose > 1:
|
||||
warnings.warn(f'Using nn.init.kaiming_uniform_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
||||
kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
||||
generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
||||
|
||||
def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs):
|
||||
del kwargs
|
||||
if verbose > 1:
|
||||
warnings.warn(f'Using nn.init.kaiming_normal_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}')
|
||||
kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity)
|
||||
generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
||||
|
||||
def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
|
||||
del kwargs
|
||||
xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain)
|
||||
if verbose > 1:
|
||||
warnings.warn(f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' + f'gain={init_gain}')
|
||||
generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
||||
|
||||
def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs):
|
||||
xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain)
|
||||
if verbose > 1:
|
||||
warnings.warn(f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' + f'gain={init_gain}')
|
||||
generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose)
|
||||
MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_}
|
46
models/LLaVA/build/lib/llava/model/utils.py
Normal file
46
models/LLaVA/build/lib/llava/model/utils.py
Normal file
@@ -0,0 +1,46 @@
|
||||
import torch
|
||||
from llava.model import *
|
||||
from transformers import AutoConfig, StoppingCriteria
|
||||
|
||||
|
||||
def auto_upgrade(config):
|
||||
cfg = AutoConfig.from_pretrained(config)
|
||||
if 'llava' in config and 'llava' not in cfg.model_type:
|
||||
assert cfg.model_type == 'llama'
|
||||
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
|
||||
print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
|
||||
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
|
||||
if confirm.lower() in ["y", "yes"]:
|
||||
print("Upgrading checkpoint...")
|
||||
assert len(cfg.architectures) == 1
|
||||
setattr(cfg.__class__, "model_type", "llava")
|
||||
cfg.architectures[0] = 'LlavaLlamaForCausalLM'
|
||||
cfg.save_pretrained(config)
|
||||
print("Checkpoint upgraded.")
|
||||
else:
|
||||
print("Checkpoint upgrade aborted.")
|
||||
exit(1)
|
||||
|
||||
|
||||
|
||||
class KeywordsStoppingCriteria(StoppingCriteria):
|
||||
def __init__(self, keywords, tokenizer, input_ids):
|
||||
self.keywords = keywords
|
||||
self.keyword_ids = [tokenizer(keyword).input_ids for keyword in keywords]
|
||||
self.keyword_ids = [keyword_id[0] for keyword_id in self.keyword_ids if type(keyword_id) is list and len(keyword_id) == 1]
|
||||
self.tokenizer = tokenizer
|
||||
self.start_len = None
|
||||
self.input_ids = input_ids
|
||||
|
||||
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||||
if self.start_len is None:
|
||||
self.start_len = self.input_ids.shape[1]
|
||||
else:
|
||||
for keyword_id in self.keyword_ids:
|
||||
if output_ids[0, -1] == keyword_id:
|
||||
return True
|
||||
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
||||
for keyword in self.keywords:
|
||||
if keyword in outputs:
|
||||
return True
|
||||
return False
|
Reference in New Issue
Block a user