add
This commit is contained in:
111
models/LLaVA/build/lib/llava/eval/eval_gpt_review.py
Normal file
111
models/LLaVA/build/lib/llava/eval/eval_gpt_review.py
Normal file
@@ -0,0 +1,111 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
import openai
|
||||
import tqdm
|
||||
import ray
|
||||
import time
|
||||
|
||||
@ray.remote(num_cpus=4)
|
||||
def get_eval(content: str, max_tokens: int):
|
||||
while True:
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model='gpt-4',
|
||||
messages=[{
|
||||
'role': 'system',
|
||||
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
||||
}, {
|
||||
'role': 'user',
|
||||
'content': content,
|
||||
}],
|
||||
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
break
|
||||
except openai.error.RateLimitError:
|
||||
pass
|
||||
except Exception as e:
|
||||
print(e)
|
||||
time.sleep(1)
|
||||
|
||||
print('success!')
|
||||
return response['choices'][0]['message']['content']
|
||||
|
||||
|
||||
def parse_score(review):
|
||||
try:
|
||||
score_pair = review.split('\n')[0]
|
||||
score_pair = score_pair.replace(',', ' ')
|
||||
sp = score_pair.split(' ')
|
||||
if len(sp) == 2:
|
||||
return [float(sp[0]), float(sp[1])]
|
||||
else:
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
||||
parser.add_argument('-q', '--question')
|
||||
# parser.add_argument('-a', '--answer')
|
||||
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
||||
parser.add_argument('-r', '--rule')
|
||||
parser.add_argument('-o', '--output')
|
||||
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
||||
args = parser.parse_args()
|
||||
|
||||
ray.init()
|
||||
|
||||
f_q = open(os.path.expanduser(args.question))
|
||||
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
||||
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
||||
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
||||
|
||||
review_file = open(f'{args.output}', 'w')
|
||||
|
||||
js_list = []
|
||||
handles = []
|
||||
idx = 0
|
||||
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
||||
# if idx == 1:
|
||||
# break
|
||||
|
||||
ques = json.loads(ques_js)
|
||||
ans1 = json.loads(ans1_js)
|
||||
ans2 = json.loads(ans2_js)
|
||||
|
||||
category = json.loads(ques_js)['category']
|
||||
if category in rule_dict:
|
||||
rule = rule_dict[category]
|
||||
else:
|
||||
rule = rule_dict['default']
|
||||
prompt = rule['prompt']
|
||||
role = rule['role']
|
||||
content = (f'[Question]\n{ques["text"]}\n\n'
|
||||
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
||||
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
||||
f'[System]\n{prompt}\n\n')
|
||||
js_list.append({
|
||||
'id': idx+1,
|
||||
'question_id': ques['question_id'],
|
||||
'answer1_id': ans1['answer_id'],
|
||||
'answer2_id': ans2['answer_id'],
|
||||
'category': category})
|
||||
idx += 1
|
||||
handles.append(get_eval.remote(content, args.max_tokens))
|
||||
# To avoid the rate limit set by OpenAI
|
||||
time.sleep(1)
|
||||
|
||||
reviews = ray.get(handles)
|
||||
for idx, review in enumerate(reviews):
|
||||
scores = parse_score(review)
|
||||
js_list[idx]['content'] = review
|
||||
js_list[idx]['tuple'] = scores
|
||||
review_file.write(json.dumps(js_list[idx]) + '\n')
|
||||
review_file.close()
|
116
models/LLaVA/build/lib/llava/eval/eval_gpt_review_visual.py
Normal file
116
models/LLaVA/build/lib/llava/eval/eval_gpt_review_visual.py
Normal file
@@ -0,0 +1,116 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
|
||||
import openai
|
||||
import tqdm
|
||||
import ray
|
||||
import time
|
||||
|
||||
@ray.remote(num_cpus=4)
|
||||
def get_eval(content: str, max_tokens: int):
|
||||
while True:
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model='gpt-4',
|
||||
messages=[{
|
||||
'role': 'system',
|
||||
'content': 'You are a helpful and precise assistant for checking the quality of the answer.'
|
||||
}, {
|
||||
'role': 'user',
|
||||
'content': content,
|
||||
}],
|
||||
temperature=0.2, # TODO: figure out which temperature is best for evaluation
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
break
|
||||
except openai.error.RateLimitError:
|
||||
pass
|
||||
except Exception as e:
|
||||
print(e)
|
||||
time.sleep(1)
|
||||
|
||||
print('success!')
|
||||
return response['choices'][0]['message']['content']
|
||||
|
||||
|
||||
def parse_score(review):
|
||||
try:
|
||||
score_pair = review.split('\n')[0]
|
||||
score_pair = score_pair.replace(',', ' ')
|
||||
sp = score_pair.split(' ')
|
||||
if len(sp) == 2:
|
||||
return [float(sp[0]), float(sp[1])]
|
||||
else:
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print('error', review)
|
||||
return [-1, -1]
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='ChatGPT-based QA evaluation.')
|
||||
parser.add_argument('-q', '--question')
|
||||
parser.add_argument('-c', '--context')
|
||||
parser.add_argument('-a', '--answer-list', nargs='+', default=[])
|
||||
parser.add_argument('-r', '--rule')
|
||||
parser.add_argument('-o', '--output')
|
||||
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
||||
args = parser.parse_args()
|
||||
|
||||
ray.init()
|
||||
|
||||
f_q = open(os.path.expanduser(args.question))
|
||||
f_ans1 = open(os.path.expanduser(args.answer_list[0]))
|
||||
f_ans2 = open(os.path.expanduser(args.answer_list[1]))
|
||||
rule_dict = json.load(open(os.path.expanduser(args.rule), 'r'))
|
||||
|
||||
review_file = open(f'{args.output}', 'w')
|
||||
|
||||
context_list = [json.loads(line) for line in open(os.path.expanduser(args.context))]
|
||||
image_to_context = {context['image']: context for context in context_list}
|
||||
|
||||
js_list = []
|
||||
handles = []
|
||||
idx = 0
|
||||
for ques_js, ans1_js, ans2_js in zip(f_q, f_ans1, f_ans2):
|
||||
ques = json.loads(ques_js)
|
||||
ans1 = json.loads(ans1_js)
|
||||
ans2 = json.loads(ans2_js)
|
||||
|
||||
inst = image_to_context[ques['image']]
|
||||
cap_str = '\n'.join(inst['captions'])
|
||||
box_str = '\n'.join([f'{instance["category"]}: {instance["bbox"]}' for instance in inst['instances']])
|
||||
|
||||
category = json.loads(ques_js)['category']
|
||||
if category in rule_dict:
|
||||
rule = rule_dict[category]
|
||||
else:
|
||||
assert False, f"Visual QA category not found in rule file: {category}."
|
||||
prompt = rule['prompt']
|
||||
role = rule['role']
|
||||
content = (f'[Context]\n{cap_str}\n\n{box_str}\n\n'
|
||||
f'[Question]\n{ques["text"]}\n\n'
|
||||
f'[{role} 1]\n{ans1["text"]}\n\n[End of {role} 1]\n\n'
|
||||
f'[{role} 2]\n{ans2["text"]}\n\n[End of {role} 2]\n\n'
|
||||
f'[System]\n{prompt}\n\n')
|
||||
js_list.append({
|
||||
'id': idx+1,
|
||||
'question_id': ques['question_id'],
|
||||
'answer1_id': ans1.get('answer_id', ans1['question_id']),
|
||||
'answer2_id': ans2.get('answer_id', ans2['answer_id']),
|
||||
'category': category})
|
||||
idx += 1
|
||||
handles.append(get_eval.remote(content, args.max_tokens))
|
||||
# To avoid the rate limit set by OpenAI
|
||||
time.sleep(1)
|
||||
|
||||
reviews = ray.get(handles)
|
||||
for idx, review in enumerate(reviews):
|
||||
scores = parse_score(review)
|
||||
js_list[idx]['content'] = review
|
||||
js_list[idx]['tuple'] = scores
|
||||
review_file.write(json.dumps(js_list[idx]) + '\n')
|
||||
review_file.close()
|
99
models/LLaVA/build/lib/llava/eval/eval_science_qa.py
Normal file
99
models/LLaVA/build/lib/llava/eval/eval_science_qa.py
Normal file
@@ -0,0 +1,99 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import random
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--base-dir', type=str)
|
||||
parser.add_argument('--result-file', type=str)
|
||||
parser.add_argument('--output-file', type=str)
|
||||
parser.add_argument('--output-result', type=str)
|
||||
parser.add_argument('--split', type=str, default='test')
|
||||
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def convert_caps(results):
|
||||
fakecaps = []
|
||||
for result in results:
|
||||
image_id = result['question_id']
|
||||
caption = result['text']
|
||||
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
||||
return fakecaps
|
||||
|
||||
|
||||
def get_pred_idx(prediction, choices, options):
|
||||
"""
|
||||
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
||||
"""
|
||||
if prediction in options[:len(choices)]:
|
||||
return options.index(prediction)
|
||||
else:
|
||||
return random.choice(range(len(choices)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
base_dir = args.base_dir
|
||||
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
||||
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
||||
predictions = [json.loads(line) for line in open(args.result_file)]
|
||||
predictions = {pred['question_id']: pred for pred in predictions}
|
||||
split_problems = {idx: problems[idx] for idx in split_indices}
|
||||
|
||||
results = {'correct': [], 'incorrect': []}
|
||||
sqa_results = {}
|
||||
sqa_results['acc'] = None
|
||||
sqa_results['correct'] = None
|
||||
sqa_results['count'] = None
|
||||
sqa_results['results'] = {}
|
||||
sqa_results['outputs'] = {}
|
||||
|
||||
for prob_id, prob in split_problems.items():
|
||||
if prob_id not in predictions:
|
||||
continue
|
||||
pred = predictions[prob_id]
|
||||
pred_text = pred['text']
|
||||
|
||||
pattern = re.compile(r'The answer is ([A-Z]).')
|
||||
res = pattern.findall(pred_text)
|
||||
if len(res) == 1:
|
||||
answer = res[0] # 'A', 'B', ...
|
||||
else:
|
||||
answer = "FAILED"
|
||||
|
||||
pred_idx = get_pred_idx(answer, prob['choices'], args.options)
|
||||
|
||||
analysis = {
|
||||
'question_id': prob_id,
|
||||
'parsed_ans': answer,
|
||||
'ground_truth': args.options[prob['answer']],
|
||||
'question': pred['prompt'],
|
||||
'pred': pred_text,
|
||||
'is_multimodal': '<image>' in pred['prompt'],
|
||||
}
|
||||
|
||||
sqa_results['results'][prob_id] = get_pred_idx(answer, prob['choices'], args.options)
|
||||
sqa_results['outputs'][prob_id] = pred_text
|
||||
|
||||
if pred_idx == prob['answer']:
|
||||
results['correct'].append(analysis)
|
||||
else:
|
||||
results['incorrect'].append(analysis)
|
||||
|
||||
correct = len(results['correct'])
|
||||
total = len(results['correct']) + len(results['incorrect'])
|
||||
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
|
||||
|
||||
sqa_results['acc'] = correct / total * 100
|
||||
sqa_results['correct'] = correct
|
||||
sqa_results['count'] = total
|
||||
|
||||
with open(args.output_file, 'w') as f:
|
||||
json.dump(results, f, indent=2)
|
||||
with open(args.output_result, 'w') as f:
|
||||
json.dump(sqa_results, f, indent=2)
|
104
models/LLaVA/build/lib/llava/eval/eval_science_qa_gpt4.py
Normal file
104
models/LLaVA/build/lib/llava/eval/eval_science_qa_gpt4.py
Normal file
@@ -0,0 +1,104 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import random
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--base-dir', type=str)
|
||||
parser.add_argument('--gpt4-result', type=str)
|
||||
parser.add_argument('--our-result', type=str)
|
||||
parser.add_argument('--split', type=str, default='test')
|
||||
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def convert_caps(results):
|
||||
fakecaps = []
|
||||
for result in results:
|
||||
image_id = result['question_id']
|
||||
caption = result['text']
|
||||
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
||||
return fakecaps
|
||||
|
||||
|
||||
def get_pred_idx(prediction, choices, options):
|
||||
"""
|
||||
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
||||
"""
|
||||
if prediction in options[:len(choices)]:
|
||||
return options.index(prediction)
|
||||
else:
|
||||
return random.choice(range(len(choices)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
base_dir = args.base_dir
|
||||
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
||||
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
||||
our_predictions = [json.loads(line) for line in open(args.our_result)]
|
||||
our_predictions = {pred['question_id']: pred for pred in our_predictions}
|
||||
split_problems = {idx: problems[idx] for idx in split_indices}
|
||||
|
||||
gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
|
||||
|
||||
results = defaultdict(lambda: 0)
|
||||
|
||||
for prob_id, prob in split_problems.items():
|
||||
if prob_id not in our_predictions:
|
||||
continue
|
||||
if prob_id not in gpt4_predictions:
|
||||
continue
|
||||
our_pred = our_predictions[prob_id]['text']
|
||||
gpt4_pred = gpt4_predictions[prob_id]
|
||||
|
||||
pattern = re.compile(r'The answer is ([A-Z]).')
|
||||
our_res = pattern.findall(our_pred)
|
||||
if len(our_res) == 1:
|
||||
our_answer = our_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
our_answer = "FAILED"
|
||||
gpt4_res = pattern.findall(gpt4_pred)
|
||||
if len(gpt4_res) == 1:
|
||||
gpt4_answer = gpt4_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
gpt4_answer = "FAILED"
|
||||
|
||||
our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
|
||||
gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
|
||||
|
||||
if gpt4_answer == 'FAILED':
|
||||
results['gpt4_failed'] += 1
|
||||
# continue
|
||||
gpt4_pred_idx = our_pred_idx
|
||||
# if our_pred_idx != prob['answer']:
|
||||
# print(our_predictions[prob_id]['prompt'])
|
||||
# print('-----------------')
|
||||
# print(f'LECTURE: {prob["lecture"]}')
|
||||
# print(f'SOLUTION: {prob["solution"]}')
|
||||
# print('=====================')
|
||||
else:
|
||||
# continue
|
||||
pass
|
||||
# gpt4_pred_idx = our_pred_idx
|
||||
|
||||
if gpt4_pred_idx == prob['answer']:
|
||||
results['correct'] += 1
|
||||
else:
|
||||
results['incorrect'] += 1
|
||||
|
||||
|
||||
if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
|
||||
results['correct_upperbound'] += 1
|
||||
|
||||
correct = results['correct']
|
||||
total = results['correct'] + results['incorrect']
|
||||
print(f'Total: {total}, Correct: {correct}, Accuracy: {correct / total * 100:.2f}%')
|
||||
print(f'Total: {total}, Correct (upper): {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
|
||||
|
@@ -0,0 +1,149 @@
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import random
|
||||
from collections import defaultdict
|
||||
|
||||
|
||||
def get_args():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--base-dir', type=str)
|
||||
parser.add_argument('--gpt4-result', type=str)
|
||||
parser.add_argument('--requery-result', type=str)
|
||||
parser.add_argument('--our-result', type=str)
|
||||
parser.add_argument('--output-result', type=str)
|
||||
parser.add_argument('--split', type=str, default='test')
|
||||
parser.add_argument('--options', type=list, default=["A", "B", "C", "D", "E"])
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def convert_caps(results):
|
||||
fakecaps = []
|
||||
for result in results:
|
||||
image_id = result['question_id']
|
||||
caption = result['text']
|
||||
fakecaps.append({"image_id": int(image_id), "caption": caption})
|
||||
return fakecaps
|
||||
|
||||
|
||||
def get_pred_idx(prediction, choices, options):
|
||||
"""
|
||||
Get the index (e.g. 2) from the prediction (e.g. 'C')
|
||||
"""
|
||||
if prediction in options[:len(choices)]:
|
||||
return options.index(prediction)
|
||||
else:
|
||||
return random.choice(range(len(choices)))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = get_args()
|
||||
|
||||
base_dir = args.base_dir
|
||||
split_indices = json.load(open(os.path.join(base_dir, "pid_splits.json")))[args.split]
|
||||
problems = json.load(open(os.path.join(base_dir, "problems.json")))
|
||||
our_predictions = [json.loads(line) for line in open(args.our_result)]
|
||||
our_predictions = {pred['question_id']: pred for pred in our_predictions}
|
||||
split_problems = {idx: problems[idx] for idx in split_indices}
|
||||
|
||||
requery_predictions = [json.loads(line) for line in open(args.requery_result)]
|
||||
requery_predictions = {pred['question_id']: pred for pred in requery_predictions}
|
||||
|
||||
gpt4_predictions = json.load(open(args.gpt4_result))['outputs']
|
||||
|
||||
results = defaultdict(lambda: 0)
|
||||
|
||||
sqa_results = {}
|
||||
sqa_results['acc'] = None
|
||||
sqa_results['correct'] = None
|
||||
sqa_results['count'] = None
|
||||
sqa_results['results'] = {}
|
||||
sqa_results['outputs'] = {}
|
||||
|
||||
for prob_id, prob in split_problems.items():
|
||||
if prob_id not in our_predictions:
|
||||
assert False
|
||||
if prob_id not in gpt4_predictions:
|
||||
assert False
|
||||
our_pred = our_predictions[prob_id]['text']
|
||||
gpt4_pred = gpt4_predictions[prob_id]
|
||||
if prob_id not in requery_predictions:
|
||||
results['missing_requery'] += 1
|
||||
requery_pred = "MISSING"
|
||||
else:
|
||||
requery_pred = requery_predictions[prob_id]['text']
|
||||
|
||||
pattern = re.compile(r'The answer is ([A-Z]).')
|
||||
our_res = pattern.findall(our_pred)
|
||||
if len(our_res) == 1:
|
||||
our_answer = our_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
our_answer = "FAILED"
|
||||
|
||||
requery_res = pattern.findall(requery_pred)
|
||||
if len(requery_res) == 1:
|
||||
requery_answer = requery_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
requery_answer = "FAILED"
|
||||
|
||||
gpt4_res = pattern.findall(gpt4_pred)
|
||||
if len(gpt4_res) == 1:
|
||||
gpt4_answer = gpt4_res[0] # 'A', 'B', ...
|
||||
else:
|
||||
gpt4_answer = "FAILED"
|
||||
|
||||
our_pred_idx = get_pred_idx(our_answer, prob['choices'], args.options)
|
||||
gpt4_pred_idx = get_pred_idx(gpt4_answer, prob['choices'], args.options)
|
||||
requery_pred_idx = get_pred_idx(requery_answer, prob['choices'], args.options)
|
||||
|
||||
results['total'] += 1
|
||||
|
||||
if gpt4_answer == 'FAILED':
|
||||
results['gpt4_failed'] += 1
|
||||
if gpt4_pred_idx == prob['answer']:
|
||||
results['gpt4_correct'] += 1
|
||||
if our_pred_idx == prob['answer']:
|
||||
results['gpt4_ourvisual_correct'] += 1
|
||||
elif gpt4_pred_idx == prob['answer']:
|
||||
results['gpt4_correct'] += 1
|
||||
results['gpt4_ourvisual_correct'] += 1
|
||||
|
||||
if our_pred_idx == prob['answer']:
|
||||
results['our_correct'] += 1
|
||||
|
||||
if requery_answer == 'FAILED':
|
||||
sqa_results['results'][prob_id] = our_pred_idx
|
||||
if our_pred_idx == prob['answer']:
|
||||
results['requery_correct'] += 1
|
||||
else:
|
||||
sqa_results['results'][prob_id] = requery_pred_idx
|
||||
if requery_pred_idx == prob['answer']:
|
||||
results['requery_correct'] += 1
|
||||
else:
|
||||
print(f"""
|
||||
Question ({args.options[prob['answer']]}): {our_predictions[prob_id]['prompt']}
|
||||
Our ({our_answer}): {our_pred}
|
||||
GPT-4 ({gpt4_answer}): {gpt4_pred}
|
||||
Requery ({requery_answer}): {requery_pred}
|
||||
print("=====================================")
|
||||
""")
|
||||
|
||||
if gpt4_pred_idx == prob['answer'] or our_pred_idx == prob['answer']:
|
||||
results['correct_upperbound'] += 1
|
||||
|
||||
total = results['total']
|
||||
print(f'Total: {total}, Our-Correct: {results["our_correct"]}, Accuracy: {results["our_correct"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, GPT-4-Correct: {results["gpt4_correct"]}, Accuracy: {results["gpt4_correct"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, GPT-4 NO-ANS (RANDOM): {results["gpt4_failed"]}, Percentage: {results["gpt4_failed"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, GPT-4-OursVisual-Correct: {results["gpt4_ourvisual_correct"]}, Accuracy: {results["gpt4_ourvisual_correct"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, Requery-Correct: {results["requery_correct"]}, Accuracy: {results["requery_correct"] / total * 100:.2f}%')
|
||||
print(f'Total: {total}, Correct upper: {results["correct_upperbound"]}, Accuracy: {results["correct_upperbound"] / total * 100:.2f}%')
|
||||
|
||||
sqa_results['acc'] = results["requery_correct"] / total * 100
|
||||
sqa_results['correct'] = results["requery_correct"]
|
||||
sqa_results['count'] = total
|
||||
|
||||
with open(args.output_result, 'w') as f:
|
||||
json.dump(sqa_results, f, indent=2)
|
||||
|
@@ -0,0 +1,111 @@
|
||||
"""Generate json file for webpage."""
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
|
||||
# models = ['llama', 'alpaca', 'gpt35', 'bard']
|
||||
models = ['vicuna']
|
||||
|
||||
|
||||
def read_jsonl(path: str, key: str=None):
|
||||
data = []
|
||||
with open(os.path.expanduser(path)) as f:
|
||||
for line in f:
|
||||
if not line:
|
||||
continue
|
||||
data.append(json.loads(line))
|
||||
if key is not None:
|
||||
data.sort(key=lambda x: x[key])
|
||||
data = {item[key]: item for item in data}
|
||||
return data
|
||||
|
||||
|
||||
def trim_hanging_lines(s: str, n: int) -> str:
|
||||
s = s.strip()
|
||||
for _ in range(n):
|
||||
s = s.split('\n', 1)[1].strip()
|
||||
return s
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
questions = read_jsonl('table/question.jsonl', key='question_id')
|
||||
|
||||
# alpaca_answers = read_jsonl('table/answer/answer_alpaca-13b.jsonl', key='question_id')
|
||||
# bard_answers = read_jsonl('table/answer/answer_bard.jsonl', key='question_id')
|
||||
# gpt35_answers = read_jsonl('table/answer/answer_gpt35.jsonl', key='question_id')
|
||||
# llama_answers = read_jsonl('table/answer/answer_llama-13b.jsonl', key='question_id')
|
||||
vicuna_answers = read_jsonl('table/answer/answer_vicuna-13b.jsonl', key='question_id')
|
||||
ours_answers = read_jsonl('table/results/llama-13b-hf-alpaca.jsonl', key='question_id')
|
||||
|
||||
review_vicuna = read_jsonl('table/review/review_vicuna-13b_llama-13b-hf-alpaca.jsonl', key='question_id')
|
||||
# review_alpaca = read_jsonl('table/review/review_alpaca-13b_vicuna-13b.jsonl', key='question_id')
|
||||
# review_bard = read_jsonl('table/review/review_bard_vicuna-13b.jsonl', key='question_id')
|
||||
# review_gpt35 = read_jsonl('table/review/review_gpt35_vicuna-13b.jsonl', key='question_id')
|
||||
# review_llama = read_jsonl('table/review/review_llama-13b_vicuna-13b.jsonl', key='question_id')
|
||||
|
||||
records = []
|
||||
for qid in questions.keys():
|
||||
r = {
|
||||
'id': qid,
|
||||
'category': questions[qid]['category'],
|
||||
'question': questions[qid]['text'],
|
||||
'answers': {
|
||||
# 'alpaca': alpaca_answers[qid]['text'],
|
||||
# 'llama': llama_answers[qid]['text'],
|
||||
# 'bard': bard_answers[qid]['text'],
|
||||
# 'gpt35': gpt35_answers[qid]['text'],
|
||||
'vicuna': vicuna_answers[qid]['text'],
|
||||
'ours': ours_answers[qid]['text'],
|
||||
},
|
||||
'evaluations': {
|
||||
# 'alpaca': review_alpaca[qid]['text'],
|
||||
# 'llama': review_llama[qid]['text'],
|
||||
# 'bard': review_bard[qid]['text'],
|
||||
'vicuna': review_vicuna[qid]['content'],
|
||||
# 'gpt35': review_gpt35[qid]['text'],
|
||||
},
|
||||
'scores': {
|
||||
'vicuna': review_vicuna[qid]['tuple'],
|
||||
# 'alpaca': review_alpaca[qid]['score'],
|
||||
# 'llama': review_llama[qid]['score'],
|
||||
# 'bard': review_bard[qid]['score'],
|
||||
# 'gpt35': review_gpt35[qid]['score'],
|
||||
},
|
||||
}
|
||||
|
||||
# cleanup data
|
||||
cleaned_evals = {}
|
||||
for k, v in r['evaluations'].items():
|
||||
v = v.strip()
|
||||
lines = v.split('\n')
|
||||
# trim the first line if it's a pair of numbers
|
||||
if re.match(r'\d+[, ]+\d+', lines[0]):
|
||||
lines = lines[1:]
|
||||
v = '\n'.join(lines)
|
||||
cleaned_evals[k] = v.replace('Assistant 1', "**Assistant 1**").replace('Assistant 2', '**Assistant 2**')
|
||||
|
||||
r['evaluations'] = cleaned_evals
|
||||
records.append(r)
|
||||
|
||||
# Reorder the records, this is optional
|
||||
for r in records:
|
||||
if r['id'] <= 20:
|
||||
r['id'] += 60
|
||||
else:
|
||||
r['id'] -= 20
|
||||
for r in records:
|
||||
if r['id'] <= 50:
|
||||
r['id'] += 10
|
||||
elif 50 < r['id'] <= 60:
|
||||
r['id'] -= 50
|
||||
for r in records:
|
||||
if r['id'] == 7:
|
||||
r['id'] = 1
|
||||
elif r['id'] < 7:
|
||||
r['id'] += 1
|
||||
|
||||
records.sort(key=lambda x: x['id'])
|
||||
|
||||
# Write to file
|
||||
with open('webpage/data.json', 'w') as f:
|
||||
json.dump({'questions': records, 'models': models}, f, indent=2)
|
84
models/LLaVA/build/lib/llava/eval/model_qa.py
Normal file
84
models/LLaVA/build/lib/llava/eval/model_qa.py
Normal file
@@ -0,0 +1,84 @@
|
||||
import argparse
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, StoppingCriteria
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
import shortuuid
|
||||
|
||||
from llava.conversation import default_conversation
|
||||
from llava.utils import disable_torch_init
|
||||
|
||||
|
||||
# new stopping implementation
|
||||
class KeywordsStoppingCriteria(StoppingCriteria):
|
||||
def __init__(self, keywords, tokenizer, input_ids):
|
||||
self.keywords = keywords
|
||||
self.tokenizer = tokenizer
|
||||
self.start_len = None
|
||||
self.input_ids = input_ids
|
||||
|
||||
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||||
if self.start_len is None:
|
||||
self.start_len = self.input_ids.shape[1]
|
||||
else:
|
||||
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
||||
for keyword in self.keywords:
|
||||
if keyword in outputs:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
@torch.inference_mode()
|
||||
def eval_model(model_name, questions_file, answers_file):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
model_name = os.path.expanduser(model_name)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name,
|
||||
torch_dtype=torch.float16).cuda()
|
||||
|
||||
|
||||
ques_file = open(os.path.expanduser(questions_file), "r")
|
||||
ans_file = open(os.path.expanduser(answers_file), "w")
|
||||
for i, line in enumerate(tqdm(ques_file)):
|
||||
idx = json.loads(line)["question_id"]
|
||||
qs = json.loads(line)["text"]
|
||||
cat = json.loads(line)["category"]
|
||||
conv = default_conversation.copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
prompt = conv.get_prompt()
|
||||
inputs = tokenizer([prompt])
|
||||
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||||
stopping_criteria = KeywordsStoppingCriteria([conv.sep], tokenizer, input_ids)
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
do_sample=True,
|
||||
temperature=0.7,
|
||||
max_new_tokens=1024,
|
||||
stopping_criteria=[stopping_criteria])
|
||||
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
||||
try:
|
||||
index = outputs.index(conv.sep, len(prompt))
|
||||
except ValueError:
|
||||
outputs += conv.sep
|
||||
index = outputs.index(conv.sep, len(prompt))
|
||||
|
||||
outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
|
||||
ans_id = shortuuid.uuid()
|
||||
ans_file.write(json.dumps({"question_id": idx,
|
||||
"text": outputs,
|
||||
"answer_id": ans_id,
|
||||
"model_id": model_name,
|
||||
"metadata": {}}) + "\n")
|
||||
ans_file.flush()
|
||||
ans_file.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
||||
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||||
args = parser.parse_args()
|
||||
|
||||
eval_model(args.model_name, args.question_file, args.answers_file)
|
207
models/LLaVA/build/lib/llava/eval/model_vqa.py
Normal file
207
models/LLaVA/build/lib/llava/eval/model_vqa.py
Normal file
@@ -0,0 +1,207 @@
|
||||
import argparse
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
import shortuuid
|
||||
|
||||
from llava import LlavaLlamaForCausalLM
|
||||
from llava.conversation import conv_templates
|
||||
from llava.utils import disable_torch_init
|
||||
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
|
||||
|
||||
from PIL import Image
|
||||
import random
|
||||
import math
|
||||
|
||||
|
||||
def split_list(lst, n):
|
||||
"""Split a list into n (roughly) equal-sized chunks"""
|
||||
chunk_size = math.ceil(len(lst) / n) # integer division
|
||||
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
||||
|
||||
|
||||
def get_chunk(lst, n, k):
|
||||
chunks = split_list(lst, n)
|
||||
return chunks[k]
|
||||
|
||||
|
||||
DEFAULT_IMAGE_TOKEN = "<image>"
|
||||
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
||||
DEFAULT_IM_START_TOKEN = "<im_start>"
|
||||
DEFAULT_IM_END_TOKEN = "<im_end>"
|
||||
|
||||
|
||||
def patch_config(config):
|
||||
patch_dict = {
|
||||
"use_mm_proj": True,
|
||||
"mm_vision_tower": "openai/clip-vit-large-patch14",
|
||||
"mm_hidden_size": 1024
|
||||
}
|
||||
|
||||
cfg = AutoConfig.from_pretrained(config)
|
||||
if not hasattr(cfg, "mm_vision_tower"):
|
||||
print(f'`mm_vision_tower` not found in `{config}`, applying patch and save to disk.')
|
||||
for k, v in patch_dict.items():
|
||||
setattr(cfg, k, v)
|
||||
cfg.save_pretrained(config)
|
||||
|
||||
|
||||
def eval_model(args):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
model_name = os.path.expanduser(args.model_name)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
if args.mm_projector is None:
|
||||
patch_config(model_name)
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda()
|
||||
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
|
||||
|
||||
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
if mm_use_im_start_end:
|
||||
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
|
||||
vision_tower = model.model.vision_tower[0]
|
||||
vision_tower.to(device='cuda', dtype=torch.float16)
|
||||
vision_config = vision_tower.config
|
||||
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||||
vision_config.use_im_start_end = mm_use_im_start_end
|
||||
if mm_use_im_start_end:
|
||||
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||||
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
else:
|
||||
# in case of using a pretrained model with only a MLP projector weights
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda()
|
||||
|
||||
vision_tower = CLIPVisionModel.from_pretrained(args.vision_tower, torch_dtype=torch.float16).cuda()
|
||||
image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower, torch_dtype=torch.float16)
|
||||
|
||||
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
if mm_use_im_start_end:
|
||||
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
|
||||
vision_config = vision_tower.config
|
||||
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||||
vision_config.use_im_start_end = mm_use_im_start_end
|
||||
if mm_use_im_start_end:
|
||||
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||||
|
||||
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
|
||||
mm_projector = torch.nn.Linear(vision_config.hidden_size, model.config.hidden_size)
|
||||
mm_projector_weights = torch.load(args.mm_projector, map_location='cpu')
|
||||
mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
|
||||
|
||||
model.model.mm_projector = mm_projector.cuda().half()
|
||||
model.model.vision_tower = [vision_tower]
|
||||
|
||||
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
||||
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
||||
answers_file = os.path.expanduser(args.answers_file)
|
||||
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
||||
ans_file = open(answers_file, "w")
|
||||
for i, line in enumerate(tqdm(questions)):
|
||||
idx = line["question_id"]
|
||||
image_file = line["image"]
|
||||
qs = line["text"]
|
||||
cur_prompt = qs
|
||||
if mm_use_im_start_end:
|
||||
qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
|
||||
else:
|
||||
qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
|
||||
|
||||
if args.conv_mode == 'simple_legacy':
|
||||
qs += '\n\n### Response:'
|
||||
# conv = default_conversation.copy()
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
prompt = conv.get_prompt()
|
||||
inputs = tokenizer([prompt])
|
||||
|
||||
image = Image.open(os.path.join(args.image_folder, image_file))
|
||||
# image.save(os.path.join(save_image_folder, image_file))
|
||||
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||||
|
||||
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||||
|
||||
# new stopping implementation
|
||||
class KeywordsStoppingCriteria(StoppingCriteria):
|
||||
def __init__(self, keywords, tokenizer, input_ids):
|
||||
self.keywords = keywords
|
||||
self.tokenizer = tokenizer
|
||||
self.start_len = None
|
||||
self.input_ids = input_ids
|
||||
|
||||
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||||
if self.start_len is None:
|
||||
self.start_len = self.input_ids.shape[1]
|
||||
else:
|
||||
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
||||
for keyword in self.keywords:
|
||||
if keyword in outputs:
|
||||
return True
|
||||
return False
|
||||
|
||||
keywords = ['###']
|
||||
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=image_tensor.unsqueeze(0).half().cuda(),
|
||||
do_sample=True,
|
||||
temperature=0.7,
|
||||
max_new_tokens=1024,
|
||||
stopping_criteria=[stopping_criteria])
|
||||
|
||||
input_token_len = input_ids.shape[1]
|
||||
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
||||
if n_diff_input_output > 0:
|
||||
print(f'[Warning] Sample {i}: {n_diff_input_output} output_ids are not the same as the input_ids')
|
||||
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
||||
|
||||
if args.conv_mode == 'simple_legacy' or args.conv_mode == 'simple':
|
||||
while True:
|
||||
cur_len = len(outputs)
|
||||
outputs = outputs.strip()
|
||||
for pattern in ['###', 'Assistant:', 'Response:']:
|
||||
if outputs.startswith(pattern):
|
||||
outputs = outputs[len(pattern):].strip()
|
||||
if len(outputs) == cur_len:
|
||||
break
|
||||
|
||||
try:
|
||||
index = outputs.index(conv.sep)
|
||||
except ValueError:
|
||||
outputs += conv.sep
|
||||
index = outputs.index(conv.sep)
|
||||
|
||||
outputs = outputs[:index].strip()
|
||||
|
||||
ans_id = shortuuid.uuid()
|
||||
ans_file.write(json.dumps({"question_id": idx,
|
||||
"prompt": cur_prompt,
|
||||
"text": outputs,
|
||||
"answer_id": ans_id,
|
||||
"model_id": model_name,
|
||||
"metadata": {}}) + "\n")
|
||||
ans_file.flush()
|
||||
ans_file.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--image-folder", type=str, default="")
|
||||
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
||||
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||||
parser.add_argument("--mm-projector", type=str, default=None)
|
||||
parser.add_argument("--vision-tower", type=str, default=None)
|
||||
parser.add_argument("--conv-mode", type=str, default="simple")
|
||||
parser.add_argument("--num-chunks", type=int, default=1)
|
||||
parser.add_argument("--chunk-idx", type=int, default=0)
|
||||
args = parser.parse_args()
|
||||
|
||||
eval_model(args)
|
309
models/LLaVA/build/lib/llava/eval/model_vqa_science.py
Normal file
309
models/LLaVA/build/lib/llava/eval/model_vqa_science.py
Normal file
@@ -0,0 +1,309 @@
|
||||
import argparse
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||||
import torch
|
||||
import os
|
||||
import json
|
||||
from tqdm import tqdm
|
||||
import shortuuid
|
||||
|
||||
from llava import LlavaLlamaForCausalLM
|
||||
from llava.conversation import conv_templates
|
||||
from llava.utils import disable_torch_init
|
||||
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
|
||||
|
||||
from PIL import Image
|
||||
import random
|
||||
import math
|
||||
|
||||
|
||||
def split_list(lst, n):
|
||||
"""Split a list into n (roughly) equal-sized chunks"""
|
||||
chunk_size = math.ceil(len(lst) / n) # integer division
|
||||
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
||||
|
||||
|
||||
def get_chunk(lst, n, k):
|
||||
chunks = split_list(lst, n)
|
||||
return chunks[k]
|
||||
|
||||
|
||||
DEFAULT_IMAGE_TOKEN = "<image>"
|
||||
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
||||
DEFAULT_IM_START_TOKEN = "<im_start>"
|
||||
DEFAULT_IM_END_TOKEN = "<im_end>"
|
||||
|
||||
|
||||
|
||||
|
||||
detail_describe_instructions = [
|
||||
"Describe the following image in detail.",
|
||||
"Provide a detailed description of the given image.",
|
||||
"Give an elaborate explanation of the image you see.",
|
||||
"Share a comprehensive rundown of the presented image.",
|
||||
"Offer a thorough analysis of the image.",
|
||||
"Explain the various aspects of the image before you.",
|
||||
"Clarify the contents of the displayed image with great detail.",
|
||||
"Characterize the image using a well-detailed description.",
|
||||
"Break down the elements of the image in a detailed manner.",
|
||||
"Walk through the important details of the image.",
|
||||
"Portray the image with a rich, descriptive narrative.",
|
||||
"Narrate the contents of the image with precision.",
|
||||
"Analyze the image in a comprehensive and detailed manner.",
|
||||
"Illustrate the image through a descriptive explanation.",
|
||||
"Examine the image closely and share its details.",
|
||||
"Write an exhaustive depiction of the given image.",
|
||||
]
|
||||
|
||||
concise_describe_instructions = [
|
||||
"Describe the following image concisely.",
|
||||
"Provide a brief description of the given image.",
|
||||
"Offer a succinct explanation of the picture presented.",
|
||||
"Summarize the visual content of the following image.",
|
||||
"Give a short and clear explanation of the subsequent image.",
|
||||
"Share a concise interpretation of the image provided.",
|
||||
"Present a compact description of the photo's key features.",
|
||||
"Relay a brief, clear account of the picture shown.",
|
||||
"Render a clear and concise summary of the photo below.",
|
||||
"Write a terse but informative summary of the following picture.",
|
||||
"Create a compact narrative representing the image presented.",
|
||||
]
|
||||
|
||||
prompt_pool = detail_describe_instructions + concise_describe_instructions
|
||||
|
||||
prompt_pool = [ "Describe the following image in detail."]
|
||||
|
||||
|
||||
def patch_config(config):
|
||||
patch_dict = {
|
||||
"use_mm_proj": True,
|
||||
"mm_vision_tower": "openai/clip-vit-large-patch14",
|
||||
"mm_hidden_size": 1024
|
||||
}
|
||||
|
||||
cfg = AutoConfig.from_pretrained(config)
|
||||
if not hasattr(cfg, "mm_vision_tower"):
|
||||
print(f'`mm_vision_tower` not found in `{config}`, applying patch and save to disk.')
|
||||
for k, v in patch_dict.items():
|
||||
setattr(cfg, k, v)
|
||||
cfg.save_pretrained(config)
|
||||
|
||||
|
||||
# new stopping implementation
|
||||
class KeywordsStoppingCriteria(StoppingCriteria):
|
||||
def __init__(self, keywords, tokenizer, input_ids):
|
||||
self.keywords = keywords
|
||||
self.tokenizer = tokenizer
|
||||
self.start_len = None
|
||||
self.input_ids = input_ids
|
||||
|
||||
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||||
if self.start_len is None:
|
||||
self.start_len = self.input_ids.shape[1]
|
||||
else:
|
||||
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
||||
for keyword in self.keywords:
|
||||
if keyword in outputs:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def eval_model(args):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
model_name = os.path.expanduser(args.model_name)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
if args.mm_projector is None:
|
||||
patch_config(model_name)
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).cuda()
|
||||
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
|
||||
|
||||
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
if mm_use_im_start_end:
|
||||
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
|
||||
vision_tower = model.model.vision_tower[0]
|
||||
vision_tower.to(device='cuda', dtype=torch.float16)
|
||||
vision_config = vision_tower.config
|
||||
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||||
vision_config.use_im_start_end = mm_use_im_start_end
|
||||
if mm_use_im_start_end:
|
||||
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||||
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
else:
|
||||
# in case of using a pretrained model with only a MLP projector weights
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, use_cache=True).cuda()
|
||||
|
||||
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
if mm_use_im_start_end:
|
||||
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
|
||||
vision_tower = CLIPVisionModel.from_pretrained(args.vision_tower, torch_dtype=torch.float16).cuda()
|
||||
image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower, torch_dtype=torch.float16)
|
||||
|
||||
vision_config = vision_tower.config
|
||||
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||||
vision_config.use_im_start_end = mm_use_im_start_end
|
||||
if mm_use_im_start_end:
|
||||
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||||
|
||||
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
|
||||
mm_projector = torch.nn.Linear(vision_config.hidden_size, model.config.hidden_size)
|
||||
mm_projector_weights = torch.load(args.mm_projector, map_location='cpu')
|
||||
mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
|
||||
|
||||
model.model.mm_projector = mm_projector.cuda().half()
|
||||
model.model.vision_tower = [vision_tower]
|
||||
|
||||
questions = json.load(open(os.path.expanduser(args.question_file), "r"))
|
||||
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
||||
answers_file = os.path.expanduser(args.answers_file)
|
||||
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
||||
os.makedirs(os.path.join(os.path.dirname(answers_file), "images"), exist_ok=True)
|
||||
ans_file = open(answers_file, "w")
|
||||
save_image_folder = os.path.join(os.path.dirname(os.path.expanduser(args.answers_file)), "images")
|
||||
for i, line in enumerate(tqdm(questions)):
|
||||
idx = line["id"]
|
||||
question = line['conversations'][0]
|
||||
gt_ans = line["conversations"][1]
|
||||
|
||||
qs = question['value']
|
||||
|
||||
qs = qs.replace('<image>', '').strip()
|
||||
cur_prompt = qs
|
||||
|
||||
if 'image' in line:
|
||||
image_file = line["image"]
|
||||
image = Image.open(os.path.join(args.image_folder, image_file))
|
||||
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||||
images = image_tensor.unsqueeze(0).half().cuda()
|
||||
if getattr(model.config, 'mm_use_im_start_end', False):
|
||||
qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
|
||||
else:
|
||||
qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
|
||||
cur_prompt = cur_prompt + '\n' + '<image>'
|
||||
else:
|
||||
images = None
|
||||
|
||||
if args.conv_mode == 'simple_legacy':
|
||||
qs += '\n\n### Response:'
|
||||
assert gt_ans['from'] == 'gpt'
|
||||
# conv = default_conversation.copy()
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
prompt = conv.get_prompt()
|
||||
inputs = tokenizer([prompt])
|
||||
|
||||
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||||
|
||||
keywords = ['###']
|
||||
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=images,
|
||||
do_sample=True,
|
||||
temperature=0.7,
|
||||
max_new_tokens=1024,
|
||||
stopping_criteria=[stopping_criteria])
|
||||
|
||||
# TODO: new implementation
|
||||
input_token_len = input_ids.shape[1]
|
||||
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
||||
if n_diff_input_output > 0:
|
||||
print(f'[Warning] Sample {i}: {n_diff_input_output} output_ids are not the same as the input_ids')
|
||||
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
||||
|
||||
if args.conv_mode == 'simple_legacy':
|
||||
while True:
|
||||
cur_len = len(outputs)
|
||||
outputs = outputs.strip()
|
||||
for pattern in ['###', 'Assistant:', 'Response:']:
|
||||
if outputs.startswith(pattern):
|
||||
outputs = outputs[len(pattern):].strip()
|
||||
if len(outputs) == cur_len:
|
||||
break
|
||||
|
||||
try:
|
||||
index = outputs.index(conv.sep)
|
||||
except ValueError:
|
||||
outputs += conv.sep
|
||||
index = outputs.index(conv.sep)
|
||||
|
||||
outputs = outputs[:index].strip()
|
||||
|
||||
# prompt for answer
|
||||
if args.answer_prompter:
|
||||
outputs_reasoning = outputs
|
||||
inputs = tokenizer([prompt + outputs_reasoning + ' ###\nANSWER:'])
|
||||
|
||||
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||||
|
||||
keywords = ['###']
|
||||
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=images,
|
||||
do_sample=True,
|
||||
temperature=0.7,
|
||||
max_new_tokens=64,
|
||||
stopping_criteria=[stopping_criteria])
|
||||
|
||||
input_token_len = input_ids.shape[1]
|
||||
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
||||
if n_diff_input_output > 0:
|
||||
print(f'[Warning] Sample {i}: {n_diff_input_output} output_ids are not the same as the input_ids')
|
||||
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
||||
|
||||
try:
|
||||
index = outputs.index(conv.sep)
|
||||
except ValueError:
|
||||
outputs += conv.sep
|
||||
index = outputs.index(conv.sep)
|
||||
|
||||
outputs = outputs[:index].strip()
|
||||
outputs = outputs_reasoning + '\n The answer is ' + outputs
|
||||
|
||||
# new implementation ends
|
||||
|
||||
# original implementation
|
||||
# outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
|
||||
# try:
|
||||
# index = outputs.index(conv.sep, len(prompt))
|
||||
# except ValueError:
|
||||
# outputs += conv.sep
|
||||
# index = outputs.index(conv.sep, len(prompt))
|
||||
|
||||
# outputs = outputs[len(prompt) + len(conv.roles[1]) + 2:index].strip()
|
||||
|
||||
|
||||
ans_id = shortuuid.uuid()
|
||||
ans_file.write(json.dumps({"question_id": idx,
|
||||
"prompt": cur_prompt,
|
||||
"text": outputs,
|
||||
"answer_id": ans_id,
|
||||
"model_id": model_name,
|
||||
"metadata": {}}) + "\n")
|
||||
ans_file.flush()
|
||||
ans_file.close()
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--image-folder", type=str, default="")
|
||||
parser.add_argument("--question-file", type=str, default="tables/question.json")
|
||||
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||||
parser.add_argument("--mm-projector", type=str, default=None)
|
||||
parser.add_argument("--vision-tower", type=str, default=None)
|
||||
parser.add_argument("--conv-mode", type=str, default="simple")
|
||||
parser.add_argument("--num-chunks", type=int, default=1)
|
||||
parser.add_argument("--chunk-idx", type=int, default=0)
|
||||
parser.add_argument("--answer-prompter", action="store_true")
|
||||
args = parser.parse_args()
|
||||
|
||||
eval_model(args)
|
74
models/LLaVA/build/lib/llava/eval/qa_baseline_gpt35.py
Normal file
74
models/LLaVA/build/lib/llava/eval/qa_baseline_gpt35.py
Normal file
@@ -0,0 +1,74 @@
|
||||
"""Generate answers with GPT-3.5"""
|
||||
# Note: you need to be using OpenAI Python v0.27.0 for the code below to work
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import concurrent.futures
|
||||
|
||||
import openai
|
||||
import tqdm
|
||||
import shortuuid
|
||||
|
||||
MODEL = 'gpt-3.5-turbo'
|
||||
MODEL_ID = 'gpt-3.5-turbo:20230327'
|
||||
|
||||
def get_answer(question_id: int, question: str, max_tokens: int):
|
||||
ans = {
|
||||
'answer_id': shortuuid.uuid(),
|
||||
'question_id': question_id,
|
||||
'model_id': MODEL_ID,
|
||||
}
|
||||
for _ in range(3):
|
||||
try:
|
||||
response = openai.ChatCompletion.create(
|
||||
model=MODEL,
|
||||
messages=[{
|
||||
'role': 'system',
|
||||
'content': 'You are a helpful assistant.'
|
||||
}, {
|
||||
'role': 'user',
|
||||
'content': question,
|
||||
}],
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
ans['text'] = response['choices'][0]['message']['content']
|
||||
return ans
|
||||
except Exception as e:
|
||||
print('[ERROR]', e)
|
||||
ans['text'] = '#ERROR#'
|
||||
time.sleep(1)
|
||||
return ans
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='ChatGPT answer generation.')
|
||||
parser.add_argument('-q', '--question')
|
||||
parser.add_argument('-o', '--output')
|
||||
parser.add_argument('--max-tokens', type=int, default=1024, help='maximum number of tokens produced in the output')
|
||||
args = parser.parse_args()
|
||||
|
||||
questions_dict = {}
|
||||
with open(os.path.expanduser(args.question)) as f:
|
||||
for line in f:
|
||||
if not line:
|
||||
continue
|
||||
q = json.loads(line)
|
||||
questions_dict[q['question_id']] = q['text']
|
||||
|
||||
answers = []
|
||||
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=32) as executor:
|
||||
futures = []
|
||||
for qid, question in questions_dict.items():
|
||||
future = executor.submit(get_answer, qid, question, args.max_tokens)
|
||||
futures.append(future)
|
||||
|
||||
for future in tqdm.tqdm(concurrent.futures.as_completed(futures), total=len(futures)):
|
||||
answers.append(future.result())
|
||||
|
||||
answers.sort(key=lambda x: x['question_id'])
|
||||
|
||||
with open(os.path.expanduser(args.output), 'w') as f:
|
||||
table = [json.dumps(ans) for ans in answers]
|
||||
f.write('\n'.join(table))
|
125
models/LLaVA/build/lib/llava/eval/run_llava.py
Normal file
125
models/LLaVA/build/lib/llava/eval/run_llava.py
Normal file
@@ -0,0 +1,125 @@
|
||||
import argparse
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM
|
||||
import torch
|
||||
import os
|
||||
from llava.conversation import conv_templates, SeparatorStyle
|
||||
from llava.utils import disable_torch_init
|
||||
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
|
||||
from llava.model import *
|
||||
from llava.model.utils import KeywordsStoppingCriteria
|
||||
|
||||
from PIL import Image
|
||||
|
||||
import os
|
||||
import requests
|
||||
from PIL import Image
|
||||
from io import BytesIO
|
||||
|
||||
|
||||
DEFAULT_IMAGE_TOKEN = "<image>"
|
||||
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
||||
DEFAULT_IM_START_TOKEN = "<im_start>"
|
||||
DEFAULT_IM_END_TOKEN = "<im_end>"
|
||||
|
||||
|
||||
def load_image(image_file):
|
||||
if image_file.startswith('http') or image_file.startswith('https'):
|
||||
response = requests.get(image_file)
|
||||
image = Image.open(BytesIO(response.content)).convert('RGB')
|
||||
else:
|
||||
image = Image.open(image_file).convert('RGB')
|
||||
return image
|
||||
|
||||
|
||||
def eval_model(args):
|
||||
# Model
|
||||
disable_torch_init()
|
||||
model_name = os.path.expanduser(args.model_name)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
|
||||
if "mpt" in model_name.lower():
|
||||
model = LlavaMPTForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
|
||||
else:
|
||||
model = LlavaLlamaForCausalLM.from_pretrained(model_name, low_cpu_mem_usage=True, torch_dtype=torch.float16, use_cache=True).cuda()
|
||||
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
|
||||
|
||||
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||||
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||||
if mm_use_im_start_end:
|
||||
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||||
|
||||
vision_tower = model.get_model().vision_tower[0]
|
||||
if vision_tower.device.type == 'meta':
|
||||
vision_tower = CLIPVisionModel.from_pretrained(vision_tower.config._name_or_path, torch_dtype=torch.float16, low_cpu_mem_usage=True).cuda()
|
||||
model.get_model().vision_tower[0] = vision_tower
|
||||
else:
|
||||
vision_tower.to(device='cuda', dtype=torch.float16)
|
||||
vision_config = vision_tower.config
|
||||
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||||
vision_config.use_im_start_end = mm_use_im_start_end
|
||||
if mm_use_im_start_end:
|
||||
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||||
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
||||
|
||||
qs = args.query
|
||||
if mm_use_im_start_end:
|
||||
qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
|
||||
else:
|
||||
qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
|
||||
|
||||
if "v1" in model_name.lower():
|
||||
conv_mode = "llava_v1"
|
||||
elif "mpt" in model_name.lower():
|
||||
conv_mode = "mpt_multimodal"
|
||||
else:
|
||||
conv_mode = "multimodal"
|
||||
|
||||
if args.conv_mode is not None and conv_mode != args.conv_mode:
|
||||
print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode))
|
||||
else:
|
||||
args.conv_mode = conv_mode
|
||||
|
||||
conv = conv_templates[args.conv_mode].copy()
|
||||
conv.append_message(conv.roles[0], qs)
|
||||
conv.append_message(conv.roles[1], None)
|
||||
prompt = conv.get_prompt()
|
||||
inputs = tokenizer([prompt])
|
||||
|
||||
image = load_image(args.image_file)
|
||||
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||||
|
||||
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||||
|
||||
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
|
||||
keywords = [stop_str]
|
||||
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||||
|
||||
with torch.inference_mode():
|
||||
output_ids = model.generate(
|
||||
input_ids,
|
||||
images=image_tensor.unsqueeze(0).half().cuda(),
|
||||
do_sample=True,
|
||||
temperature=0.2,
|
||||
max_new_tokens=1024,
|
||||
stopping_criteria=[stopping_criteria])
|
||||
|
||||
input_token_len = input_ids.shape[1]
|
||||
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
||||
if n_diff_input_output > 0:
|
||||
print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids')
|
||||
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
||||
outputs = outputs.strip()
|
||||
if outputs.endswith(stop_str):
|
||||
outputs = outputs[:-len(stop_str)]
|
||||
outputs = outputs.strip()
|
||||
print(outputs)
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
||||
parser.add_argument("--image-file", type=str, required=True)
|
||||
parser.add_argument("--query", type=str, required=True)
|
||||
parser.add_argument("--conv-mode", type=str, default=None)
|
||||
args = parser.parse_args()
|
||||
|
||||
eval_model(args)
|
26
models/LLaVA/build/lib/llava/eval/summarize_gpt_review.py
Normal file
26
models/LLaVA/build/lib/llava/eval/summarize_gpt_review.py
Normal file
@@ -0,0 +1,26 @@
|
||||
import json
|
||||
import os
|
||||
from collections import defaultdict
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
base_dir = "vqa/reviews/coco2014_val80"
|
||||
review_files = [x for x in os.listdir(base_dir) if x.endswith('.jsonl') and x.startswith('gpt4_text')]
|
||||
|
||||
for review_file in sorted(review_files):
|
||||
config = review_file.replace('gpt4_text_', '').replace('.jsonl', '')
|
||||
scores = defaultdict(list)
|
||||
print(f'GPT-4 vs. {config}')
|
||||
with open(os.path.join(base_dir, review_file)) as f:
|
||||
for review_str in f:
|
||||
review = json.loads(review_str)
|
||||
scores[review['category']].append(review['tuple'])
|
||||
scores['all'].append(review['tuple'])
|
||||
for k, v in scores.items():
|
||||
stats = np.asarray(v).mean(0).tolist()
|
||||
stats = [round(x, 3) for x in stats]
|
||||
print(k, stats, round(stats[1]/stats[0]*100, 1))
|
||||
print('=================================')
|
||||
|
Reference in New Issue
Block a user