add
This commit is contained in:
368
models/LLaVA/build/lib/llava/conversation.py
Normal file
368
models/LLaVA/build/lib/llava/conversation.py
Normal file
@@ -0,0 +1,368 @@
|
||||
import dataclasses
|
||||
from enum import auto, Enum
|
||||
from typing import List, Tuple
|
||||
|
||||
|
||||
class SeparatorStyle(Enum):
|
||||
"""Different separator style."""
|
||||
SINGLE = auto()
|
||||
TWO = auto()
|
||||
MPT = auto()
|
||||
|
||||
|
||||
@dataclasses.dataclass
|
||||
class Conversation:
|
||||
"""A class that keeps all conversation history."""
|
||||
system: str
|
||||
roles: List[str]
|
||||
messages: List[List[str]]
|
||||
offset: int
|
||||
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
||||
sep: str = "###"
|
||||
sep2: str = None
|
||||
version: str = "Unknown"
|
||||
|
||||
skip_next: bool = False
|
||||
|
||||
def get_prompt(self):
|
||||
if self.sep_style == SeparatorStyle.SINGLE:
|
||||
ret = self.system + self.sep
|
||||
for role, message in self.messages:
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += role + ": " + message + self.sep
|
||||
else:
|
||||
ret += role + ":"
|
||||
return ret
|
||||
elif self.sep_style == SeparatorStyle.TWO:
|
||||
seps = [self.sep, self.sep2]
|
||||
ret = self.system + seps[0]
|
||||
for i, (role, message) in enumerate(self.messages):
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += role + ": " + message + seps[i % 2]
|
||||
else:
|
||||
ret += role + ":"
|
||||
return ret
|
||||
if self.sep_style == SeparatorStyle.MPT:
|
||||
ret = self.system + self.sep
|
||||
for role, message in self.messages:
|
||||
if message:
|
||||
if type(message) is tuple:
|
||||
message, _, _ = message
|
||||
ret += role + message + self.sep
|
||||
else:
|
||||
ret += role
|
||||
return ret
|
||||
else:
|
||||
raise ValueError(f"Invalid style: {self.sep_style}")
|
||||
|
||||
def append_message(self, role, message):
|
||||
self.messages.append([role, message])
|
||||
|
||||
def get_images(self, return_pil=False):
|
||||
images = []
|
||||
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
||||
if i % 2 == 0:
|
||||
if type(msg) is tuple:
|
||||
import base64
|
||||
from io import BytesIO
|
||||
from PIL import Image
|
||||
msg, image, image_process_mode = msg
|
||||
if image_process_mode == "Pad":
|
||||
def expand2square(pil_img, background_color=(122, 116, 104)):
|
||||
width, height = pil_img.size
|
||||
if width == height:
|
||||
return pil_img
|
||||
elif width > height:
|
||||
result = Image.new(pil_img.mode, (width, width), background_color)
|
||||
result.paste(pil_img, (0, (width - height) // 2))
|
||||
return result
|
||||
else:
|
||||
result = Image.new(pil_img.mode, (height, height), background_color)
|
||||
result.paste(pil_img, ((height - width) // 2, 0))
|
||||
return result
|
||||
image = expand2square(image)
|
||||
elif image_process_mode == "Crop":
|
||||
pass
|
||||
elif image_process_mode == "Resize":
|
||||
image = image.resize((224, 224))
|
||||
else:
|
||||
raise ValueError(f"Invalid image_process_mode: {image_process_mode}")
|
||||
max_hw, min_hw = max(image.size), min(image.size)
|
||||
aspect_ratio = max_hw / min_hw
|
||||
max_len, min_len = 800, 400
|
||||
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
||||
longest_edge = int(shortest_edge * aspect_ratio)
|
||||
W, H = image.size
|
||||
if H > W:
|
||||
H, W = longest_edge, shortest_edge
|
||||
else:
|
||||
H, W = shortest_edge, longest_edge
|
||||
image = image.resize((W, H))
|
||||
if return_pil:
|
||||
images.append(image)
|
||||
else:
|
||||
buffered = BytesIO()
|
||||
image.save(buffered, format="JPEG")
|
||||
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
||||
images.append(img_b64_str)
|
||||
return images
|
||||
|
||||
def to_gradio_chatbot(self):
|
||||
ret = []
|
||||
for i, (role, msg) in enumerate(self.messages[self.offset:]):
|
||||
if i % 2 == 0:
|
||||
if type(msg) is tuple:
|
||||
import base64
|
||||
from io import BytesIO
|
||||
msg, image, image_process_mode = msg
|
||||
max_hw, min_hw = max(image.size), min(image.size)
|
||||
aspect_ratio = max_hw / min_hw
|
||||
max_len, min_len = 800, 400
|
||||
shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw))
|
||||
longest_edge = int(shortest_edge * aspect_ratio)
|
||||
W, H = image.size
|
||||
if H > W:
|
||||
H, W = longest_edge, shortest_edge
|
||||
else:
|
||||
H, W = shortest_edge, longest_edge
|
||||
image = image.resize((W, H))
|
||||
# image = image.resize((224, 224))
|
||||
buffered = BytesIO()
|
||||
image.save(buffered, format="JPEG")
|
||||
img_b64_str = base64.b64encode(buffered.getvalue()).decode()
|
||||
img_str = f'<img src="data:image/png;base64,{img_b64_str}" alt="user upload image" />'
|
||||
msg = msg.replace('<image>', img_str)
|
||||
ret.append([msg, None])
|
||||
else:
|
||||
ret[-1][-1] = msg
|
||||
return ret
|
||||
|
||||
def copy(self):
|
||||
return Conversation(
|
||||
system=self.system,
|
||||
roles=self.roles,
|
||||
messages=[[x, y] for x, y in self.messages],
|
||||
offset=self.offset,
|
||||
sep_style=self.sep_style,
|
||||
sep=self.sep,
|
||||
sep2=self.sep2)
|
||||
|
||||
def dict(self):
|
||||
if len(self.get_images()) > 0:
|
||||
return {
|
||||
"system": self.system,
|
||||
"roles": self.roles,
|
||||
"messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages],
|
||||
"offset": self.offset,
|
||||
"sep": self.sep,
|
||||
"sep2": self.sep2,
|
||||
}
|
||||
return {
|
||||
"system": self.system,
|
||||
"roles": self.roles,
|
||||
"messages": self.messages,
|
||||
"offset": self.offset,
|
||||
"sep": self.sep,
|
||||
"sep2": self.sep2,
|
||||
}
|
||||
|
||||
|
||||
conv_v1 = Conversation(
|
||||
system="A chat between a curious human and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
||||
roles=("Human", "Assistant"),
|
||||
messages=(
|
||||
("Human", "Give three tips for staying healthy."),
|
||||
("Assistant",
|
||||
"Sure, here are three tips for staying healthy:\n"
|
||||
"1. Exercise regularly: Regular physical activity can help improve your overall health and wellbeing. "
|
||||
"It can also help reduce your risk of chronic conditions such as obesity, diabetes, heart disease, "
|
||||
"and certain cancers. Aim for at least 150 minutes of moderate-intensity aerobic exercise or "
|
||||
"75 minutes of vigorous-intensity aerobic exercise per week, along with muscle-strengthening "
|
||||
"activities at least two days per week.\n"
|
||||
"2. Eat a balanced diet: Eating a balanced diet that is rich in fruits, "
|
||||
"vegetables, whole grains, lean proteins, and healthy fats can help support "
|
||||
"your overall health. Try to limit your intake of processed and high-sugar foods, "
|
||||
"and aim to drink plenty of water throughout the day.\n"
|
||||
"3. Get enough sleep: Getting enough quality sleep is essential for your physical "
|
||||
"and mental health. Adults should aim for seven to nine hours of sleep per night. "
|
||||
"Establish a regular sleep schedule and try to create a relaxing bedtime routine to "
|
||||
"help improve the quality of your sleep.")
|
||||
),
|
||||
offset=2,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
)
|
||||
|
||||
conv_v1_2 = Conversation(
|
||||
system="A chat between a curious human and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the human's questions.",
|
||||
roles=("Human", "Assistant"),
|
||||
messages=(
|
||||
("Human", "What are the key differences between renewable and non-renewable energy sources?"),
|
||||
("Assistant",
|
||||
"Renewable energy sources are those that can be replenished naturally in a relatively "
|
||||
"short amount of time, such as solar, wind, hydro, geothermal, and biomass. "
|
||||
"Non-renewable energy sources, on the other hand, are finite and will eventually be "
|
||||
"depleted, such as coal, oil, and natural gas. Here are some key differences between "
|
||||
"renewable and non-renewable energy sources:\n"
|
||||
"1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable "
|
||||
"energy sources are finite and will eventually run out.\n"
|
||||
"2. Environmental impact: Renewable energy sources have a much lower environmental impact "
|
||||
"than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, "
|
||||
"and other negative effects.\n"
|
||||
"3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically "
|
||||
"have lower operational costs than non-renewable sources.\n"
|
||||
"4. Reliability: Renewable energy sources are often more reliable and can be used in more remote "
|
||||
"locations than non-renewable sources.\n"
|
||||
"5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different "
|
||||
"situations and needs, while non-renewable sources are more rigid and inflexible.\n"
|
||||
"6. Sustainability: Renewable energy sources are more sustainable over the long term, while "
|
||||
"non-renewable sources are not, and their depletion can lead to economic and social instability.\n")
|
||||
),
|
||||
offset=2,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
)
|
||||
|
||||
conv_vicuna_v1_1 = Conversation(
|
||||
system="A chat between a curious user and an artificial intelligence assistant. "
|
||||
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
||||
roles=("USER", "ASSISTANT"),
|
||||
version="v1",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.TWO,
|
||||
sep=" ",
|
||||
sep2="</s>",
|
||||
)
|
||||
|
||||
conv_mpt = Conversation(
|
||||
system="""<|im_start|>system
|
||||
- You are a helpful language and vision assistant.
|
||||
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
|
||||
- You should follow the instructions carefully and explain your answers in detail.""",
|
||||
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
||||
version="mpt",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.MPT,
|
||||
sep="<|im_end|>",
|
||||
)
|
||||
|
||||
conv_mpt_text = Conversation(
|
||||
system="""<|im_start|>system
|
||||
- You are a helpful assistant chatbot trained by MosaicML.
|
||||
- You answer questions.
|
||||
- You are excited to be able to help the user, but will refuse to do anything that could be considered harmful to the user.
|
||||
- You are more than just an information source, you are also able to write poetry, short stories, and make jokes.""",
|
||||
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
||||
version="mpt",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.MPT,
|
||||
sep="<|im_end|>",
|
||||
)
|
||||
|
||||
conv_bair_v1 = Conversation(
|
||||
system="BEGINNING OF CONVERSATION:",
|
||||
roles=("USER", "GPT"),
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.TWO,
|
||||
sep=" ",
|
||||
sep2="</s>",
|
||||
)
|
||||
|
||||
simple_conv = Conversation(
|
||||
system="You are LLaVA, a large language model trained by UW Madison WAIV Lab, based on LLaMA architecture."
|
||||
"You are designed to assist human with a variety of tasks using natural language."
|
||||
"Follow the instructions carefully.",
|
||||
roles=("Human", "Assistant"),
|
||||
messages=(
|
||||
("Human", "Hi!"),
|
||||
("Assistant", "Hi there! How can I help you today?\n")
|
||||
),
|
||||
offset=2,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
)
|
||||
|
||||
simple_conv_multimodal = Conversation(
|
||||
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
|
||||
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
||||
"Follow the instructions carefully and explain your answers in detail.",
|
||||
roles=("Human", "Assistant"),
|
||||
messages=(
|
||||
("Human", "Hi!"),
|
||||
("Assistant", "Hi there! How can I help you today?\n")
|
||||
),
|
||||
offset=2,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
)
|
||||
|
||||
simple_conv_mpt_multimodal = Conversation(
|
||||
system="""<|im_start|>system
|
||||
- You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab.
|
||||
- You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.
|
||||
- You should follow the instructions carefully and explain your answers in detail.""",
|
||||
roles=("<|im_start|>user\n", "<|im_start|>assistant\n"),
|
||||
version="mpt",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.MPT,
|
||||
sep="<|im_end|>",
|
||||
)
|
||||
|
||||
simple_conv_legacy = Conversation(
|
||||
system="You are LLaVA, a large language model trained by UW Madison WAIV Lab."
|
||||
"You are designed to assist human with a variety of tasks using natural language."
|
||||
"Follow the instructions carefully.",
|
||||
roles=("Human", "Assistant"),
|
||||
messages=(
|
||||
("Human", "Hi!\n\n### Response:"),
|
||||
("Assistant", "Hi there! How can I help you today?\n")
|
||||
),
|
||||
offset=2,
|
||||
sep_style=SeparatorStyle.SINGLE,
|
||||
sep="###",
|
||||
)
|
||||
|
||||
conv_llava_v1 = Conversation(
|
||||
system="You are LLaVA, a large language and vision assistant trained by UW Madison WAIV Lab."
|
||||
"You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language."
|
||||
"Follow the instructions carefully and explain your answers in detail.",
|
||||
roles=("USER", "ASSISTANT"),
|
||||
version="v1",
|
||||
messages=(),
|
||||
offset=0,
|
||||
sep_style=SeparatorStyle.TWO,
|
||||
sep=" ",
|
||||
sep2="</s>",
|
||||
)
|
||||
|
||||
default_conversation = conv_v1_2
|
||||
conv_templates = {
|
||||
"default": conv_v1_2,
|
||||
"simple": simple_conv,
|
||||
"simple_legacy": simple_conv_legacy,
|
||||
"multimodal": simple_conv_multimodal,
|
||||
"mpt_multimodal": simple_conv_mpt_multimodal,
|
||||
"llava_v1": conv_llava_v1,
|
||||
|
||||
# fastchat
|
||||
"v1": conv_v1_2,
|
||||
"bair_v1": conv_bair_v1,
|
||||
"vicuna_v1_1": conv_vicuna_v1_1,
|
||||
"mpt": conv_mpt,
|
||||
"mpt_text": conv_mpt_text,
|
||||
}
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(default_conversation.get_prompt())
|
Reference in New Issue
Block a user