This commit is contained in:
echo840
2023-05-23 18:24:16 +08:00
parent da758a9ca7
commit b388fba03e
470 changed files with 2523750 additions and 7307 deletions

170
eval.py
View File

@@ -1,3 +1,6 @@
import sys
sys.path.append('./models/MiniGPT4')
sys.path.append('./models/mPLUG_Owl')
import argparse
#from models.BLIP2.BLIP2 import BLIP2
import more_itertools
@@ -6,17 +9,26 @@ import datetime
import os
import json
import re
from datasets.vqa_dataset import textVQADataset, docVQADataset, ocrVQADataset, STVQADataset
from datasets.vqa_dataset import textVQADataset, docVQADataset, ocrVQADataset, STVQADataset, ESTVQADataset
from datasets.ocr_dataset import ocrDataset
from datasets.kie_dataset import SROIEDataset,FUNSDDataset
from datasets.formula_dataset import HMEDataset
from models.lavis.lavis import lavis
from models.LLaVA.LLaVA import LLaVA
from models.mPLUG_Owl.pipeline.mPLUG import mPLUG
from models.MiniGPT4.MiniGPT4 import MiniGPT4
import torch
import numpy as np
def get_model(args):
if args.model_name=='BLIP2':
#model = BLIP2(args.BLIP2_model_path, args.device)
model = lavis(args.BLIP2_model_name, args.BLIP2_model_type, args.device)
#elif args.model_name=='mPLUG-Owl':
# model =
elif args.model_name=='LLaVA':
model = LLaVA(args.LLaVA_model_path, args.device)
elif args.model_name=='MiniGPT4':
model = MiniGPT4(args, args.device)
elif args.model_name=='mPLUG':
model = mPLUG(args.mPLUG_model_name, args.device)
return model
def has_word(sentence, word):
pattern = r"\b" + re.escape(word) + r"\b"
@@ -217,7 +229,7 @@ class VQAEval:
gt_answers = gt_answers.strip()
gt_answers = self.processPunctuation(gt_answers)
gt_answers = self.processDigitArticle(gt_answers)
if has_word(answer, gt_answers[i]):
if has_word(answer, gt_answers):
return 1
else:
return 0
@@ -324,13 +336,54 @@ def evaluate_OCR(
num+=1
print(f'{dataset_name}:{float(correct)/num}')
return float(correct)/num
def evaluate_Formula(
model,
dataset,
model_name,
dataset_name,
time,
question='Please write out the expression of the formula in the image using LaTeX format.',
batch_size=1,
answer_path='./answers'
):
#Please write out the expression of the formula in the image using LaTeX format.
predictions=[]
for batch in more_itertools.chunked(
tqdm(dataset, desc="Running inference"), batch_size
):
batch = batch[0]
output = model.generate(image=batch['image_path'], question=question)
answer_dict={'question':question, 'answer':output,
'gt_answers':batch['gt_answers'], 'image_path':batch['image_path'],
'model_name':model_name}
predictions.append(answer_dict)
answer_dir = os.path.join(answer_path, time)
os.makedirs(answer_dir, exist_ok=True)
answer_path = os.path.join(answer_dir, f"{dataset_name}.json")
with open(answer_path, "w") as f:
f.write(json.dumps(predictions, indent=4))
correct = 0
num = 0
with open(answer_path, 'r') as f:
dict = json.load(f)
for i in range(len(dict)):
gt_answers = re.sub(r'\s+', '', dict[i]['gt_answers'])
answer = re.sub(r'\s+', '', dict[i]['answer'])
if gt_answers in answer:
correct+=1
num+=1
print(f'{dataset_name}:{float(correct)/num}')
return float(correct)/num
def parse_args():
parser = argparse.ArgumentParser(description="Demo")
#OCR datasets
parser.add_argument("--ocr_dir_path", type=str, default="./data")
parser.add_argument("--ocr_dataset_name", type=str, default="IIIT5K svt IC13_857 IC15_1811 svtp ct80 cocotext ctw totaltext HOST WOST WordArt")
#HME100k
parser.add_argument("--HME_image_dir_path", type=str, default="./data/HME100K/test_images")
parser.add_argument("--HME_ann_path", type=str, default="./data/HME100K/test_labels.txt")
#textVQA
parser.add_argument("--textVQA_image_dir_path", type=str, default="./data/textVQA/train_images")
parser.add_argument("--textVQA_ann_path", type=str, default="./data/textVQA/TextVQA_0.5.1_val.json")
@@ -346,6 +399,16 @@ def parse_args():
#STVQA
parser.add_argument("--STVQA_image_dir_path", type=str, default="./data/STVQA")
parser.add_argument("--STVQA_ann_path", type=str, default="./data/STVQA/train_task_3.json")
#ESTVQA
parser.add_argument("--ESTVQA_image_dir_path", type=str, default="./data/ESTVQA/images/train")
parser.add_argument("--ESTVQA_CN_ann_path", type=str, default="./data/ESTVQA/annotations/cn_train.json")
parser.add_argument("--ESTVQA_EN_ann_path", type=str, default="./data/ESTVQA/annotations/en_train.json")
#SROIE
parser.add_argument("--SROIE_dir_path", type=str, default="./data/SROIE")
#FUNSD
parser.add_argument("--FUNSD_dir_path", type=str, default="./data/FUNSD/testing_data/annotations")
#result_path
parser.add_argument("--answer_path", type=str, default="./answers")
@@ -374,20 +437,62 @@ def parse_args():
default=False,
help="Whether to evaluate on STVQA."
)
parser.add_argument(
"--eval_ESTVQA_CN",
action="store_true",
default=False,
help="Whether to evaluate on ESTVQA_CN."
)
parser.add_argument(
"--eval_ESTVQA_EN",
action="store_true",
default=False,
help="Whether to evaluate on ESTVQA_EN."
)
parser.add_argument(
"--eval_SROIE",
action="store_true",
default=False,
help="Whether to evaluate on SROIE."
)
parser.add_argument(
"--eval_FUNSD",
action="store_true",
default=False,
help="Whether to evaluate on FUNSD."
)
parser.add_argument(
"--eval_HME",
action="store_true",
default=False,
help="Whether to evaluate on HME100k."
)
parser.add_argument(
"--eval_ocr",
action="store_true",
default=False,
help="Whether to evaluate on ocr."
)
parser.add_argument(
"--eval_all",
action="store_true",
default=False,
help="Whether to evaluate all datasets"
)
#BLIP2
#parser.add_argument("--BLIP2_model_path", type=str, default="/home/zhangli/GPT4/BLIP2-flant5")
parser.add_argument("--BLIP2_model_name", type=str, default="blip2_opt")#blip2_t5 blip2_opt blip2_vicuna_instruct
parser.add_argument("--BLIP2_model_type", type=str, default="pretrain_opt6.7b")#pretrain_flant5xxl pretrain_opt6.7b vicuna13b
#LLaVA
parser.add_argument("--LLaVA_model_path", type=str, default="./models/LLaVA/model_weight")
#miniGPT4
parser.add_argument("--MiniGPT4_cfg_path", type=str, default="./models/MiniGPT4/eval_configs/minigpt4_eval.yaml")
#mPLUG
parser.add_argument("--mPLUG_model_name", type=str, default="MAGAer13/mplug-owl-llama-7b")
#parser.add_argument("--mPLUG_tokenizer_path", type=str, default="./models/mPLUG_Owl/model_weight/tokenizer.model")
parser.add_argument("--model_name", type=str, default="BLIP2")#mPLUG,miniGPT4,LLaVA
parser.add_argument("--device", type=str, default="cuda:2")
parser.add_argument("--device", type=str, default="cuda:1")
args = parser.parse_args()
return args
@@ -400,34 +505,57 @@ def main(args):
ocr_dataset_name = args.ocr_dataset_name.split()
result = {}
time = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
if args.eval_textVQA:
if args.eval_textVQA or args.eval_all:
dataset = textVQADataset(args.textVQA_image_dir_path, args.textVQA_ann_path)
acc = evaluate_VQA(model, dataset, args.model_name, 'textVQA', time)
result['textVQA'] = acc
if args.eval_docVQA:
if args.eval_docVQA or args.eval_all:
dataset = docVQADataset(args.docVQA_image_dir_path, args.docVQA_ann_path)
acc = evaluate_VQA(model, dataset, args.model_name, 'docVQA', time)
result['docVQA'] = acc
if args.eval_ocrVQA:
#Due to network issues, it's difficult to download the entire OCR-VQA dataset.
# Therefore, we will extract the first 5000 questions for testing.
if args.eval_ocrVQA or args.eval_all:
dataset = ocrVQADataset(args.ocrVQA_image_dir_path, args.ocrVQA_ann_path)
random_indices = np.random.choice(
len(dataset), max_sample_num, replace=False
)
dataset = torch.utils.data.Subset(dataset,random_indices)
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'ocrVQA', time)
result['ocrVQA'] = acc
if args.eval_STVQA:
if args.eval_STVQA or args.eval_all:
dataset = STVQADataset(args.STVQA_image_dir_path, args.STVQA_ann_path)
random_indices = np.random.choice(
len(dataset), max_sample_num, replace=False
)
dataset = torch.utils.data.Subset(dataset,random_indices)
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'STVQA', time)
result['STVQA'] = acc
if args.eval_ocr:
if args.eval_ESTVQA_CN or args.eval_all:
dataset = ESTVQADataset(args.ESTVQA_image_dir_path, args.ESTVQA_CN_ann_path)
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'ESTVQA_CN', time)
result['ESTVQA_CN'] = acc
if args.eval_ESTVQA_EN or args.eval_all:
dataset = ESTVQADataset(args.ESTVQA_image_dir_path, args.ESTVQA_EN_ann_path)
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_VQA(model, dataset, args.model_name, 'ESTVQA_EN', time)
result['ESTVQA_EN'] = acc
if args.eval_SROIE or args.eval_all:
dataset = SROIEDataset(args.SROIE_dir_path)
acc = evaluate_VQA(model, dataset, args.model_name, 'SROIE', time)
result['SROIE'] = acc
if args.eval_FUNSD or args.eval_all:
dataset = FUNSDDataset(args.FUNSD_dir_path)
acc = evaluate_VQA(model, dataset, args.model_name, 'FUNSD', time)
result['FUNSD'] = acc
if args.eval_HME or args.eval_all:
dataset = HMEDataset(args.HME_image_dir_path, args.HME_ann_path)
dataset = torch.utils.data.Subset(dataset, range(max_sample_num))
acc = evaluate_Formula(model, dataset, args.model_name, 'HME', time)
result['HME'] = acc
if args.eval_ocr or args.eval_all:
for i in range(len(ocr_dataset_name)):
dataset = ocrDataset(args.ocr_dir_path, ocr_dataset_name[i])
acc = evaluate_OCR(model, dataset, args.model_name, ocr_dataset_name[i], time)