This commit is contained in:
echo840
2023-05-23 18:24:16 +08:00
parent da758a9ca7
commit b388fba03e
470 changed files with 2523750 additions and 7307 deletions

Binary file not shown.

Binary file not shown.

View File

@@ -0,0 +1,24 @@
from torch.utils.data import Dataset
import os
class HMEDataset(Dataset):
def __init__(
self,
image_dir_path= "./data/HME100K/test_images",
ann_path= "./data/HME100K/test_labels.txt",
):
file = open(ann_path, "r")
self.lines = file.readlines()
self.image_dir_path = image_dir_path
def __len__(self):
return len(self.lines)
def __getitem__(self, idx):
image_id = self.lines[idx].split("\t")[0]
img_path = os.path.join(self.image_dir_path, image_id)
answers = self.lines[idx].split("\t")[1]
return {
"image_path": img_path,
"gt_answers": answers}
if __name__ == "__main__":
data = HMEDataset("/home/zhangli/GPT4/MutimodelOCR/data/HME100K/test_images","/home/zhangli/GPT4/MutimodelOCR/data/HME100K/test_labels.txt")
data = iter(data)
batch = next(data)

View File

@@ -0,0 +1,123 @@
from torch.utils.data import Dataset
import os
import json
class SROIEDataset(Dataset):
def __init__(
self,
dir_path= "./data/SROIE",
):
self.image_list = []
self.question_list = []
self.answer_list = []
for file_name in os.listdir(dir_path):
if file_name.endswith(".txt") and '(' not in file_name:
file_path = os.path.join(dir_path, file_name)
img_path = file_path.replace('.txt', '.jpg')
with open(file_path) as f:
content = f.read()
info = json.loads(content)
if 'company' in info.keys():
self.question_list.append("what is the name of the company that issued this invoice?")#llava 0.12
#self.question_list.append("what is the company information in the image?")#llava 0.08
self.answer_list.append(info['company'])
self.image_list.append(img_path)
if 'date' in info.keys():
self.question_list.append("when was this invoice issued?")
#self.question_list.append("what is the date information in the image?")
self.answer_list.append(info['date'])
self.image_list.append(img_path)
if 'address' in info.keys():
self.question_list.append("where was this invoice issued?")
#self.question_list.append("what is the address information in the image?")
self.answer_list.append(info['address'])
self.image_list.append(img_path)
if 'total' in info.keys():
self.question_list.append("what is the total amount of this invoice?")
#self.question_list.append("what is the total information in the image?")
self.answer_list.append(info['total'])
self.image_list.append(img_path)
def __len__(self):
return len(self.image_list)
def __getitem__(self, idx):
img_path = self.image_list[idx]
question = self.question_list[idx]
answers = self.answer_list[idx]
return {
"image_path": img_path,
"question": question,
"gt_answers": answers}
class FUNSDDataset(Dataset):
def __init__(self, ann_dir_path= "./data/FUNSD/testing_data/annotations"):
questions = []
answers = []
images = []
for file_name in os.listdir(ann_dir_path):
file_path = os.path.join(ann_dir_path, file_name)
with open(file_path, 'r') as f:
json_data = json.load(f)['form']
#去除空的linking
json_data = [d for d in json_data if "linking" in d and len(d["linking"])>0]
question_list = [d for d in json_data if d.get('label') == 'question']
answer_list = [d for d in json_data if d.get('label') == 'answer']
for i in range(len(question_list)):
link = question_list[i]['linking']
gt_answer = ""
for j in range(len(link)):
for k in range(len(answer_list)):
if answer_list[k]['id'] == link[j][1]:
if len(gt_answer)>0:
gt_answer = gt_answer + ' ' + answer_list[k]['text']
else:
gt_answer = gt_answer + answer_list[k]['text']
if len(gt_answer)>0:
questions.append(f"what is \"{question_list[i]['text']}\" information in the image?")
answers.append(gt_answer)
images.append(file_path.replace('annotations','images').replace('.json','.png'))
self.questions = questions
self.answers = answers
self.images = images
def __len__(self):
return len(self.questions)
def __getitem__(self, idx):
img_path = self.images[idx]
question = self.questions[idx]
answers = self.answers[idx]
return {
"image_path": img_path,
"question": question,
"gt_answers": answers}
class POIEDataset(Dataset):
def __init__(
self,
dir_path= "./data/POIE/test.txt",
):
self.image_list = []
self.question_list = []
self.answer_list = []
with open(dir_path, 'r') as f:
lines = f.readlines()
for line in lines:
import pdb;pdb.set_trace()
dict = json.loads(line)
for key, value in dict['entity_dict'].items():
self.image_list.append(dir_path.replace("test.txt", dict['file_name']))
self.question_list.append(key)
self.answer_list.append(value)
def __len__(self):
return len(self.image_list)
def __getitem__(self, idx):
img_path = self.image_list[idx]
question = self.question_list[idx]
answers = self.answer_list[idx]
return {
"image_path": img_path,
"question": question,
"gt_answers": answers}
if __name__ == "__main__":
data = POIEDataset("/home/zhangli/GPT4/MutimodelOCR/data/POIE/test.txt")
data = iter(data)
batch = next(data)

View File

@@ -0,0 +1,23 @@
import json
import os
import re
def has_chinese_characters(string):
pattern = re.compile(r'[\u4e00-\u9fa5]')
return bool(pattern.search(string))
if __name__ == "__main__":
ann_file = "/home/zhangli/GPT4/MutimodelOCR/data/ESTVQA/annotations/train.json"
img_file = "/home/zhangli/GPT4/MutimodelOCR/data/ESTVQA/images/train"
cn_list = []
en_list= []
with open(ann_file,'r') as f:
data = json.load(f)
for i in range(len(data)):
if has_chinese_characters(data[i]['annotation'][0]['question']):
cn_list.append(data[i])
else:
en_list.append(data[i])
with open('./cn_train.json', 'w', encoding='utf-8') as f:
json.dump(cn_list, f, ensure_ascii=False)
with open('./en_train.json', 'w', encoding='utf-8') as f:
json.dump(en_list, f, ensure_ascii=False)

View File

@@ -0,0 +1,25 @@
import json
import os
if __name__ == "__main__":
ann_dir_path = '/home/zhangli/GPT4/MutimodelOCR/data/FUNSD/training_data/annotations'
questions = []
answers = []
for file_name in os.listdir(ann_dir_path):
file_path = os.path.join(ann_dir_path, file_name)
with open(file_path, 'r') as f:
json_data = json.load(f)['form']
#去除空的linking
json_data = [d for d in json_data if "linking" in d and len(d["linking"])>0]
question_list = [d for d in json_data if d.get('label') == 'question']
answer_list = [d for d in json_data if d.get('label') == 'answer']
unique_question_list = [d for i, d in enumerate(question_list) if d['text'] not in [x['text'] for x in json_data[:i]]]
for i in range(len(unique_question_list)):
link = unique_question_list[i]['linking']
gt_answer = ""
for j in range(len(link)):
for k in range(len(answer_list)):
if answer_list[k]['id'] == link[j][1]:
gt_answer = gt_answer + answer_list[k]['text']
questions.append(unique_question_list[i]['text'])
answers.append(gt_answer)

View File

@@ -54,7 +54,6 @@ class ocrVQADataset(Dataset):
self.question_list = []
self.answer_list = []
dataset = json.load(open(ann_path, "r"))
import pdb;pdb.set_trace()
for idx, data in enumerate(dataset):
questions = dataset[data]['questions']
for index, question in enumerate(questions):
@@ -64,7 +63,7 @@ class ocrVQADataset(Dataset):
self.answer_list.append(gt_answers)
self.question_list.append(question)
def __len__(self):
return len(self.data)
return len(self.image_list)
def __getitem__(self, idx):
question = self.question_list[idx]
@@ -85,13 +84,43 @@ class STVQADataset(Dataset):
self.question_list = []
self.answer_list = []
data = json.load(open(ann_path, "r"))
for i in range(len(data)):
for i in range(len(data['data'])):
image_path = image_dir_path+'/'+data['data'][i]['dataset']+'/'+data['data'][i]['file_name']
self.image_list.append(image_path)
self.answer_list.append(data['data'][i]['answers'])
self.question_list.append(data['data'][i]['question'])
def __len__(self):
return len(self.data)
return len(self.image_list)
def __getitem__(self, idx):
question = self.question_list[idx]
answers = self.answer_list[idx]
img_path = self.image_list[idx]
return {
"image_path": img_path,
"question": question,
"gt_answers": answers}
class ESTVQADataset(Dataset):
def __init__(
self,
image_dir_path= "./data/ESTVQA/images/train",
ann_path= "./data/ESTVQA/annotations/train.json",
):
self.image_list = []
self.question_list = []
self.answer_list = []
with open(ann_path,'r') as f:
data = json.load(f)
for i in range(len(data)):
image_path = os.path.join(image_dir_path, data[i]['image'])
for j in range(len(data[i]['annotation'])):
question = data[i]['annotation'][j]['question']
answer = data[i]['annotation'][j]['answer']
self.image_list.append(image_path)
self.question_list.append(question)
self.answer_list.append(answer)
def __len__(self):
return len(self.image_list)
def __getitem__(self, idx):
question = self.question_list[idx]