add readme (#10)
* Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * remove submodule * add mPLUG MiniGPT4 * Update Readme.md * Update Readme.md * Update Readme.md --------- Co-authored-by: Yuliang Liu <34134635+Yuliang-Liu@users.noreply.github.com>
This commit is contained in:
208
models/mPLUG_Owl/mplug_owl/processing_mplug_owl.py
Normal file
208
models/mPLUG_Owl/mplug_owl/processing_mplug_owl.py
Normal file
@@ -0,0 +1,208 @@
|
||||
import re
|
||||
|
||||
import torch
|
||||
import torch.utils.checkpoint
|
||||
|
||||
from transformers.processing_utils import ProcessorMixin
|
||||
from transformers.tokenization_utils_base import BatchEncoding
|
||||
from transformers.models.clip.image_processing_clip import CLIPImageProcessor
|
||||
|
||||
|
||||
media_token = ({"image": ("<image>", 65)},)
|
||||
|
||||
|
||||
class MplugOwlProcessor(ProcessorMixin):
|
||||
attributes = []
|
||||
tokenizer_class = ("MplugOwlTokenizer")
|
||||
|
||||
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.tokens_to_generate = 0
|
||||
self.image_processor = image_processor
|
||||
self.tokenizer = tokenizer
|
||||
self.add_BOS = True
|
||||
|
||||
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
|
||||
if text is None and images is None:
|
||||
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
||||
|
||||
if text is not None:
|
||||
encoding = tokenize_prompts(
|
||||
prompts=text,
|
||||
tokens_to_generate=self.tokens_to_generate,
|
||||
add_BOS=self.add_BOS,
|
||||
tokenizer=self.tokenizer,
|
||||
ignore_dist=True,
|
||||
**kwargs,
|
||||
)
|
||||
# encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
|
||||
|
||||
if images is not None:
|
||||
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
||||
|
||||
if text is not None and images is not None:
|
||||
encoding["pixel_values"] = image_features.pixel_values
|
||||
return BatchEncoding(data=encoding)
|
||||
elif text is not None:
|
||||
return BatchEncoding(data=encoding)
|
||||
else:
|
||||
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
||||
|
||||
def batch_decode(self, skip_special_tokens=True, *args, **kwargs):
|
||||
"""
|
||||
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
||||
refer to the docstring of this method for more information.
|
||||
"""
|
||||
return self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
|
||||
|
||||
def decode(self, skip_special_tokens=True, *args, **kwargs):
|
||||
"""
|
||||
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
||||
the docstring of this method for more information.
|
||||
"""
|
||||
return self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
|
||||
|
||||
|
||||
class MplugOwlImageProcessor(CLIPImageProcessor):
|
||||
pass
|
||||
|
||||
|
||||
def detokenize_generations(tokens_gpu_tensor, lengths_gpu_tensor, return_segments, tokenizer):
|
||||
"""Detokenize the generated tokens."""
|
||||
|
||||
prompts_plus_generations = []
|
||||
if return_segments:
|
||||
prompts_plus_generations_segments = []
|
||||
|
||||
tokens = tokens_gpu_tensor.cpu().numpy().tolist()
|
||||
lengths = lengths_gpu_tensor.cpu().numpy().tolist()
|
||||
for sequence_tokens, length in zip(tokens, lengths):
|
||||
sequence_tokens = sequence_tokens[:length]
|
||||
prompts_plus_generations.append(tokenizer.detokenize(sequence_tokens))
|
||||
if return_segments:
|
||||
from tokenizers.decoders import Metaspace
|
||||
|
||||
if hasattr(tokenizer, "tokenizer"):
|
||||
if isinstance(tokenizer.tokenizer.decoder, Metaspace):
|
||||
words = tokenizer.tokenizer.decode(sequence_tokens)
|
||||
else:
|
||||
words = []
|
||||
for token in sequence_tokens:
|
||||
word = tokenizer.tokenizer.decoder[token]
|
||||
word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
|
||||
"utf-8", errors="replace"
|
||||
)
|
||||
words.append(word)
|
||||
prompts_plus_generations_segments.append(words)
|
||||
else:
|
||||
words = tokenizer.detokenize(sequence_tokens)
|
||||
# else:
|
||||
# words = []
|
||||
# for token in sequence_tokens:
|
||||
# word = tokenizer.tokenizer.decoder[token]
|
||||
# word = bytearray(
|
||||
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
|
||||
# 'utf-8', errors='replace')
|
||||
# words.append(word)
|
||||
prompts_plus_generations_segments.append(words)
|
||||
|
||||
if return_segments:
|
||||
return tokens, prompts_plus_generations, prompts_plus_generations_segments
|
||||
|
||||
return tokens, prompts_plus_generations
|
||||
|
||||
|
||||
def tokenize_prompts(
|
||||
prompts=None, tokens_to_generate=None, add_BOS=None, rank=0, tokenizer=None, ignore_dist=False, **kwargs
|
||||
):
|
||||
"""Tokenize prompts and make them avaiable on all ranks."""
|
||||
|
||||
# On all ranks set to None so we can pass them to functions
|
||||
prompts_tokens_cuda_long_tensor = None
|
||||
prompts_length_cuda_long_tensor = None
|
||||
|
||||
# On the specified rank, build the above.
|
||||
attention_mask = None
|
||||
if ignore_dist or torch.distributed.get_rank() == rank:
|
||||
assert prompts is not None
|
||||
assert tokens_to_generate is not None
|
||||
# Tensor of tokens padded and their unpadded length.
|
||||
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = _tokenize_prompts_and_batch(
|
||||
prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs
|
||||
)
|
||||
|
||||
return {
|
||||
"input_ids": prompts_tokens_cuda_long_tensor,
|
||||
"attention_mask": attention_mask,
|
||||
# "prompt_length": prompts_length_cuda_long_tensor,
|
||||
}
|
||||
|
||||
|
||||
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs):
|
||||
"""Given a set of prompts and number of tokens to generate:
|
||||
- tokenize prompts
|
||||
- set the sequence length to be the max of length of prompts plus the number of tokens we would like to generate
|
||||
- pad all the sequences to this length so we can convert them into a 2D tensor.
|
||||
"""
|
||||
|
||||
# Tokenize all the prompts.
|
||||
# if add_BOS:
|
||||
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt)
|
||||
# for prompt in prompts]
|
||||
# else:
|
||||
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
|
||||
|
||||
prompts_tokens = [_tokenize_prompt(prompt, tokenizer, add_BOS, **kwargs) for prompt in prompts]
|
||||
|
||||
# Now we have a list of list of tokens which each list has a different
|
||||
# size. We want to extend this list to:
|
||||
# - incorporate the tokens that need to be generated
|
||||
# - make all the sequences equal length.
|
||||
# Get the prompts length.
|
||||
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
|
||||
# Get the max prompts length.
|
||||
max_prompt_len = max(prompts_length)
|
||||
# Number of tokens in the each sample of the batch.
|
||||
samples_length = max_prompt_len + tokens_to_generate
|
||||
# Now update the list of list to be of the same size: samples_length.
|
||||
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
|
||||
padding_size = samples_length - prompt_length
|
||||
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size)
|
||||
|
||||
# Now we are in a structured format, we can convert to tensors.
|
||||
prompts_tokens_tensor = torch.LongTensor(prompts_tokens)
|
||||
prompts_length_tensor = torch.LongTensor(prompts_length)
|
||||
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2])
|
||||
for i, l in enumerate(prompts_length_tensor):
|
||||
attention_mask[i, :l] = 1
|
||||
return prompts_tokens_tensor, prompts_length_tensor, attention_mask
|
||||
|
||||
|
||||
def _tokenize_prompt(prompt, tokenizer, add_BOS=False, media_info={"<image>": 65}, **kwargs):
|
||||
media_tokens = {k: -int(i + 1) for i, k in enumerate(media_info.keys())}
|
||||
media_lengths = media_info.copy()
|
||||
|
||||
if add_BOS:
|
||||
prompt_chunk = [tokenizer.bos_token_id]
|
||||
else:
|
||||
prompt_chunk = []
|
||||
|
||||
# Pure Text
|
||||
if all([media_token not in prompt for media_token in media_tokens.keys()]):
|
||||
enc_chunk = prompt_chunk + tokenizer(prompt, add_special_tokens=False, **kwargs)["input_ids"]
|
||||
|
||||
# Multi-Modal Text
|
||||
else:
|
||||
enc_chunk = prompt_chunk
|
||||
pattern = "|".join(map(re.escape, list(media_tokens.keys())))
|
||||
chunk_strs = re.split(f"({pattern})", prompt)
|
||||
chunk_strs = [x for x in chunk_strs if len(x) > 0]
|
||||
for idx, chunk_str in enumerate(chunk_strs):
|
||||
if chunk_str in media_tokens:
|
||||
enc_chunk += [media_tokens[chunk_str]] * media_lengths[chunk_str]
|
||||
else:
|
||||
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)["input_ids"]
|
||||
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos
|
||||
# tmp_chunk += [tokenizer.eod_id]
|
||||
enc_chunk += tmp_chunk
|
||||
return enc_chunk
|
Reference in New Issue
Block a user