add readme (#10)

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* Update Readme.md

* remove submodule

* add mPLUG MiniGPT4

* Update Readme.md

* Update Readme.md

* Update Readme.md

---------

Co-authored-by: Yuliang Liu <34134635+Yuliang-Liu@users.noreply.github.com>
This commit is contained in:
lz
2023-06-01 09:57:03 +08:00
committed by GitHub
parent 64f7eb334d
commit 3213a65d96
275 changed files with 16059 additions and 6 deletions

View File

@@ -0,0 +1,77 @@
# Copyright 2020 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from transformers.utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_import_structure = {
"configuration_mplug_owl": ["MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP", "MplugOwlConfig"],
"processing_mplug_owl": ["MplugOwlImageProcessor", "MplugOwlProcessor"],
"tokenization_mplug_owl": ["MplugOwlTokenizer"],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_import_structure["modeling_mplug_owl"] = [
"MPLUG_OWL_PRETRAINED_MODEL_ARCHIVE_LIST",
"MplugOwlForConditionalGeneration",
"MplugOwlModel",
]
if TYPE_CHECKING:
from .configuration_mplug_owl import MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP, MplugOwlConfig
from .tokenization_mplug_owl import MplugOwlTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mplug_owl import (
MPLUG_OWL_PRETRAINED_MODEL_ARCHIVE_LIST,
MplugOwlForConditionalGeneration,
MplugOwlModel,
MplugOwlPreTrainedModel,
)
else:
import sys
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
from .configuration_mplug_owl import *
from .modeling_mplug_owl import *
from .processing_mplug_owl import *
from .tokenization_mplug_owl import *

View File

@@ -0,0 +1,298 @@
# coding=utf-8
# Copyright 2022 x-plug and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" MplugOwl model configuration"""
import copy
import os
from typing import Union
from transformers.configuration_utils import PretrainedConfig
from transformers.models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
from transformers.utils import logging
from transformers.models.auto import CONFIG_MAPPING
logger = logging.get_logger(__name__)
MPLUG_OWL_PRETRAINED_CONFIG_ARCHIVE_MAP = {
"MAGAer13/mplug-owl-llama-7b": "https://huggingface.co/MAGAer13/mplug-owl-llama-7b/resolve/main/config.json",
# See all MplugOwl models at https://huggingface.co/models?filter=mplug_owl
}
class MplugOwlVisionConfig(PretrainedConfig):
r"""
This is the configuration class to store the configuration of a [`MplugOwlVisionModel`]. It is used to instantiate
a
mPLUG-Owl vision encoder according to the specified arguments, defining the model architecture. Instantiating a
configuration defaults will yield a similar configuration to that of the mPLUG-Owl
[x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b) architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
hidden_size (`int`, *optional*, defaults to 768):
Dimensionality of the encoder layers and the pooler layer.
intermediate_size (`int`, *optional*, defaults to 3072):
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
num_hidden_layers (`int`, *optional*, defaults to 12):
Number of hidden layers in the Transformer encoder.
num_attention_heads (`int`, *optional*, defaults to 12):
Number of attention heads for each attention layer in the Transformer encoder.
image_size (`int`, *optional*, defaults to 224):
The size (resolution) of each image.
patch_size (`int`, *optional*, defaults to 32):
The size (resolution) of each patch.
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
The epsilon used by the layer normalization layers.
attention_dropout (`float`, *optional*, defaults to 0.0):
The dropout ratio for the attention probabilities.
initializer_range (`float`, *optional*, defaults to 0.02):
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
initializer_factor (`float`, *optional*, defaults to 1):
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
testing).
```"""
model_type = "mplug_owl_vision_model"
def __init__(
self,
hidden_size=1024,
intermediate_size=4096,
projection_dim=768,
num_hidden_layers=24,
num_attention_heads=16,
num_channels=3,
image_size=224,
patch_size=14,
hidden_act="quick_gelu",
layer_norm_eps=1e-6,
attention_dropout=0.0,
initializer_range=0.02,
initializer_factor=1.0,
use_flash_attn=False,
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.projection_dim = projection_dim
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.num_channels = num_channels
self.patch_size = patch_size
self.image_size = image_size
self.initializer_range = initializer_range
self.initializer_factor = initializer_factor
self.attention_dropout = attention_dropout
self.layer_norm_eps = layer_norm_eps
self.hidden_act = hidden_act
self.use_flash_attn = use_flash_attn
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the vision config dict if we are loading from MplugOwlConfig
if config_dict.get("model_type") == "mplug-owl":
config_dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class MplugOwlVisualAbstractorConfig(PretrainedConfig):
model_type = "mplug_owl_visual_abstract"
def __init__(
self,
hidden_size=1024, #
num_hidden_layers=6, #
num_attention_heads=16, #
intermediate_size=4096, #
attention_probs_dropout_prob=0.1, #
initializer_range=0.02,
layer_norm_eps=1e-6, #
encoder_hidden_size=1024, #
**kwargs,
):
super().__init__(**kwargs)
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.intermediate_size = intermediate_size
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.initializer_range = initializer_range
self.layer_norm_eps = layer_norm_eps
self.encoder_hidden_size = encoder_hidden_size
@classmethod
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
# get the visual_abstractor config dict if we are loading from MplugOwlConfig
if config_dict.get("model_type") == "mplug-owl":
config_dict = config_dict["abstractor_config"]
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
)
return cls.from_dict(config_dict, **kwargs)
class MplugOwlConfig(PretrainedConfig):
r"""
[`MplugOwlConfig`] is the configuration class to store the configuration of a [`MplugOwlForConditionalGeneration`].
It is used to instantiate a mPLUG-Owl model according to the specified arguments, defining the vision model,
Q-Former model and language model configs. Instantiating a configuration with the defaults will yield a similar
configuration to that of the mPLUG-Owl [x-plug/x_plug-llama-7b](https://huggingface.co/x-plug/x_plug-llama-7b)
architecture.
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
documentation from [`PretrainedConfig`] for more information.
Args:
vision_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`MplugOwlVisionConfig`].
visual_abstractor_config (`dict`, *optional*):
Dictionary of configuration options used to initialize [`MplugOwlVisualAbstractorConfig`].
text_config (`dict`, *optional*):
Dictionary of configuration options used to initialize any [`PretrainedConfig`].
num_query_tokens (`int`, *optional*, defaults to 32):
The number of query tokens passed through the Transformer.
kwargs (*optional*):
Dictionary of keyword arguments.
Example:
```python
>>> from transformers import (
... MplugOwlVisionConfig,
... MplugOwlVisualAbstractorConfig,
... OPTConfig,
... MplugOwlConfig,
... MplugOwlForConditionalGeneration,
... )
>>> # Initializing a MplugOwlConfig with x-plug/x_plug-llama-7b style configuration
>>> configuration = MplugOwlConfig()
>>> # Initializing a MplugOwlForConditionalGeneration (with random weights) from the x-plug/x_plug-llama-7b style configuration
>>> model = MplugOwlForConditionalGeneration(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
>>> # We can also initialize a MplugOwlConfig from a MplugOwlVisionConfig, MplugOwlVisualAbstractorConfig and any PretrainedConfig
>>> # Initializing mPLUG-Owl vision, mPLUG-Owl Q-Former and language model configurations
>>> vision_config = MplugOwlVisionConfig()
>>> visual_abstractor_config = MplugOwlVisualAbstractorConfig()
>>> text_config = OPTConfig()
>>> config = MplugOwlConfig.from_text_vision_configs(vision_config, visual_abstractor_config, text_config)
```"""
model_type = "mplug-owl"
is_composition = True
def __init__(
self, vision_config=None, visual_abstractor_config=None, text_config=None, num_query_tokens=64, **kwargs
):
super().__init__(**kwargs)
if vision_config is None:
vision_config = MplugOwlVisionConfig().to_dict()
logger.info("vision_config is None.")
if visual_abstractor_config is None:
visual_abstractor_config = {}
logger.info("abstractor_config is None. ")
if text_config is None:
# we use LLAMA 7b by default
from transformers.llama.configuration_llama import LlamaConfig
text_config = LlamaConfig(pad_token_id=2).to_dict()
logger.info("text_config is None.")
self.vision_config = MplugOwlVisionConfig(**vision_config)
self.visual_abstractor_config = MplugOwlVisualAbstractorConfig(**visual_abstractor_config)
# self.visual_abstractor_config.layer_norm_eps = 1e-6
text_model_type = text_config["model_type"] if "model_type" in text_config else "llama"
self.text_config = CONFIG_MAPPING[text_model_type](**text_config)
self.tie_word_embeddings = self.text_config.tie_word_embeddings
self.is_encoder_decoder = self.text_config.is_encoder_decoder
self.num_query_tokens = num_query_tokens
# self.visual_abstractor_config.encoder_hidden_size = self.vision_config.hidden_size
self.use_decoder_only_language_model = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES
self.initializer_factor = 1.0
self.initializer_range = 0.02
for attr in dir(self.text_config):
if not hasattr(self, attr):
setattr(self, attr, getattr(self.text_config, attr))
@classmethod
def from_vision_visual_abstractor_text_configs(
cls,
vision_config: MplugOwlVisionConfig,
visual_abstractor_config: MplugOwlVisualAbstractorConfig,
text_config: PretrainedConfig,
**kwargs,
):
r"""
Instantiate a [`MplugOwlConfig`] (or a derived class) from a mPLUG-Owl vision model, Q-Former and language
model configurations.
Returns:
[`MplugOwlConfig`]: An instance of a configuration object
"""
return cls(
vision_config=vision_config.to_dict(),
visual_abstractor_config=visual_abstractor_config.to_dict(),
text_config=text_config.to_dict(),
**kwargs,
)
def to_dict(self):
"""
Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
Returns:
`Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
"""
output = copy.deepcopy(self.__dict__)
output["vision_config"] = self.vision_config.to_dict()
output["visual_abstractor_config"] = self.visual_abstractor_config.to_dict()
output["text_config"] = self.text_config.to_dict()
output["model_type"] = self.__class__.model_type
return output

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,208 @@
import re
import torch
import torch.utils.checkpoint
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import BatchEncoding
from transformers.models.clip.image_processing_clip import CLIPImageProcessor
media_token = ({"image": ("<image>", 65)},)
class MplugOwlProcessor(ProcessorMixin):
attributes = []
tokenizer_class = ("MplugOwlTokenizer")
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
super().__init__(**kwargs)
self.tokens_to_generate = 0
self.image_processor = image_processor
self.tokenizer = tokenizer
self.add_BOS = True
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
if text is None and images is None:
raise ValueError("You have to specify either text or images. Both cannot be none.")
if text is not None:
encoding = tokenize_prompts(
prompts=text,
tokens_to_generate=self.tokens_to_generate,
add_BOS=self.add_BOS,
tokenizer=self.tokenizer,
ignore_dist=True,
**kwargs,
)
# encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
if images is not None:
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
if text is not None and images is not None:
encoding["pixel_values"] = image_features.pixel_values
return BatchEncoding(data=encoding)
elif text is not None:
return BatchEncoding(data=encoding)
else:
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
def batch_decode(self, skip_special_tokens=True, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
refer to the docstring of this method for more information.
"""
return self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
def decode(self, skip_special_tokens=True, *args, **kwargs):
"""
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
the docstring of this method for more information.
"""
return self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
class MplugOwlImageProcessor(CLIPImageProcessor):
pass
def detokenize_generations(tokens_gpu_tensor, lengths_gpu_tensor, return_segments, tokenizer):
"""Detokenize the generated tokens."""
prompts_plus_generations = []
if return_segments:
prompts_plus_generations_segments = []
tokens = tokens_gpu_tensor.cpu().numpy().tolist()
lengths = lengths_gpu_tensor.cpu().numpy().tolist()
for sequence_tokens, length in zip(tokens, lengths):
sequence_tokens = sequence_tokens[:length]
prompts_plus_generations.append(tokenizer.detokenize(sequence_tokens))
if return_segments:
from tokenizers.decoders import Metaspace
if hasattr(tokenizer, "tokenizer"):
if isinstance(tokenizer.tokenizer.decoder, Metaspace):
words = tokenizer.tokenizer.decode(sequence_tokens)
else:
words = []
for token in sequence_tokens:
word = tokenizer.tokenizer.decoder[token]
word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
"utf-8", errors="replace"
)
words.append(word)
prompts_plus_generations_segments.append(words)
else:
words = tokenizer.detokenize(sequence_tokens)
# else:
# words = []
# for token in sequence_tokens:
# word = tokenizer.tokenizer.decoder[token]
# word = bytearray(
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
# 'utf-8', errors='replace')
# words.append(word)
prompts_plus_generations_segments.append(words)
if return_segments:
return tokens, prompts_plus_generations, prompts_plus_generations_segments
return tokens, prompts_plus_generations
def tokenize_prompts(
prompts=None, tokens_to_generate=None, add_BOS=None, rank=0, tokenizer=None, ignore_dist=False, **kwargs
):
"""Tokenize prompts and make them avaiable on all ranks."""
# On all ranks set to None so we can pass them to functions
prompts_tokens_cuda_long_tensor = None
prompts_length_cuda_long_tensor = None
# On the specified rank, build the above.
attention_mask = None
if ignore_dist or torch.distributed.get_rank() == rank:
assert prompts is not None
assert tokens_to_generate is not None
# Tensor of tokens padded and their unpadded length.
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = _tokenize_prompts_and_batch(
prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs
)
return {
"input_ids": prompts_tokens_cuda_long_tensor,
"attention_mask": attention_mask,
# "prompt_length": prompts_length_cuda_long_tensor,
}
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs):
"""Given a set of prompts and number of tokens to generate:
- tokenize prompts
- set the sequence length to be the max of length of prompts plus the number of tokens we would like to generate
- pad all the sequences to this length so we can convert them into a 2D tensor.
"""
# Tokenize all the prompts.
# if add_BOS:
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt)
# for prompt in prompts]
# else:
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
prompts_tokens = [_tokenize_prompt(prompt, tokenizer, add_BOS, **kwargs) for prompt in prompts]
# Now we have a list of list of tokens which each list has a different
# size. We want to extend this list to:
# - incorporate the tokens that need to be generated
# - make all the sequences equal length.
# Get the prompts length.
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
# Get the max prompts length.
max_prompt_len = max(prompts_length)
# Number of tokens in the each sample of the batch.
samples_length = max_prompt_len + tokens_to_generate
# Now update the list of list to be of the same size: samples_length.
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
padding_size = samples_length - prompt_length
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size)
# Now we are in a structured format, we can convert to tensors.
prompts_tokens_tensor = torch.LongTensor(prompts_tokens)
prompts_length_tensor = torch.LongTensor(prompts_length)
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2])
for i, l in enumerate(prompts_length_tensor):
attention_mask[i, :l] = 1
return prompts_tokens_tensor, prompts_length_tensor, attention_mask
def _tokenize_prompt(prompt, tokenizer, add_BOS=False, media_info={"<image>": 65}, **kwargs):
media_tokens = {k: -int(i + 1) for i, k in enumerate(media_info.keys())}
media_lengths = media_info.copy()
if add_BOS:
prompt_chunk = [tokenizer.bos_token_id]
else:
prompt_chunk = []
# Pure Text
if all([media_token not in prompt for media_token in media_tokens.keys()]):
enc_chunk = prompt_chunk + tokenizer(prompt, add_special_tokens=False, **kwargs)["input_ids"]
# Multi-Modal Text
else:
enc_chunk = prompt_chunk
pattern = "|".join(map(re.escape, list(media_tokens.keys())))
chunk_strs = re.split(f"({pattern})", prompt)
chunk_strs = [x for x in chunk_strs if len(x) > 0]
for idx, chunk_str in enumerate(chunk_strs):
if chunk_str in media_tokens:
enc_chunk += [media_tokens[chunk_str]] * media_lengths[chunk_str]
else:
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)["input_ids"]
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos
# tmp_chunk += [tokenizer.eod_id]
enc_chunk += tmp_chunk
return enc_chunk

View File

@@ -0,0 +1,62 @@
# coding=utf-8
# Copyright 2022 x-plug and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for MplugOwl."""
from transformers.utils import logging
from transformers.models.llama.tokenization_llama import LlamaTokenizer
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"}
PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {
"MAGAer13/mplug-owl-llama-7b": "https://huggingface.co/MAGAer13/mplug-owl-llama-7b/resolve/main/vocab.txt",
},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
"MAGAer13/mplug-owl-llama-7b": 1024,
}
class MplugOwlTokenizer(LlamaTokenizer):
def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token="<unk>",
sp_model_kwargs=None,
add_bos_token=False,
add_eos_token=False,
clean_up_tokenization_spaces=False,
**kwargs,
):
super().__init__(
vocab_file,
unk_token,
bos_token,
eos_token,
pad_token,
sp_model_kwargs,
add_bos_token,
add_eos_token,
clean_up_tokenization_spaces,
**kwargs,
)
self.eod_id = self.eos_token_id