add readme (#10)
* Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * remove submodule * add mPLUG MiniGPT4 * Update Readme.md * Update Readme.md * Update Readme.md --------- Co-authored-by: Yuliang Liu <34134635+Yuliang-Liu@users.noreply.github.com>
This commit is contained in:
10
models/MiniGPT4/minigpt4/runners/__init__.py
Normal file
10
models/MiniGPT4/minigpt4/runners/__init__.py
Normal file
@@ -0,0 +1,10 @@
|
||||
"""
|
||||
Copyright (c) 2022, salesforce.com, inc.
|
||||
All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
"""
|
||||
|
||||
from minigpt4.runners.runner_base import RunnerBase
|
||||
|
||||
__all__ = ["RunnerBase"]
|
Binary file not shown.
Binary file not shown.
658
models/MiniGPT4/minigpt4/runners/runner_base.py
Normal file
658
models/MiniGPT4/minigpt4/runners/runner_base.py
Normal file
@@ -0,0 +1,658 @@
|
||||
"""
|
||||
Copyright (c) 2022, salesforce.com, inc.
|
||||
All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
"""
|
||||
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
import torch.distributed as dist
|
||||
import webdataset as wds
|
||||
from minigpt4.common.dist_utils import (
|
||||
download_cached_file,
|
||||
get_rank,
|
||||
get_world_size,
|
||||
is_main_process,
|
||||
main_process,
|
||||
)
|
||||
from minigpt4.common.registry import registry
|
||||
from minigpt4.common.utils import is_url
|
||||
from minigpt4.datasets.data_utils import concat_datasets, reorg_datasets_by_split, ChainDataset
|
||||
from minigpt4.datasets.datasets.dataloader_utils import (
|
||||
IterLoader,
|
||||
MultiIterLoader,
|
||||
PrefetchLoader,
|
||||
)
|
||||
from torch.nn.parallel import DistributedDataParallel as DDP
|
||||
from torch.utils.data import DataLoader, DistributedSampler
|
||||
|
||||
|
||||
@registry.register_runner("runner_base")
|
||||
class RunnerBase:
|
||||
"""
|
||||
A runner class to train and evaluate a model given a task and datasets.
|
||||
|
||||
The runner uses pytorch distributed data parallel by default. Future release
|
||||
will support other distributed frameworks.
|
||||
"""
|
||||
|
||||
def __init__(self, cfg, task, model, datasets, job_id):
|
||||
self.config = cfg
|
||||
self.job_id = job_id
|
||||
|
||||
self.task = task
|
||||
self.datasets = datasets
|
||||
|
||||
self._model = model
|
||||
|
||||
self._wrapped_model = None
|
||||
self._device = None
|
||||
self._optimizer = None
|
||||
self._scaler = None
|
||||
self._dataloaders = None
|
||||
self._lr_sched = None
|
||||
|
||||
self.start_epoch = 0
|
||||
|
||||
# self.setup_seeds()
|
||||
self.setup_output_dir()
|
||||
|
||||
@property
|
||||
def device(self):
|
||||
if self._device is None:
|
||||
self._device = torch.device(self.config.run_cfg.device)
|
||||
|
||||
return self._device
|
||||
|
||||
@property
|
||||
def use_distributed(self):
|
||||
return self.config.run_cfg.distributed
|
||||
|
||||
@property
|
||||
def model(self):
|
||||
"""
|
||||
A property to get the DDP-wrapped model on the device.
|
||||
"""
|
||||
# move model to device
|
||||
if self._model.device != self.device:
|
||||
self._model = self._model.to(self.device)
|
||||
|
||||
# distributed training wrapper
|
||||
if self.use_distributed:
|
||||
if self._wrapped_model is None:
|
||||
self._wrapped_model = DDP(
|
||||
self._model, device_ids=[self.config.run_cfg.gpu]
|
||||
)
|
||||
else:
|
||||
self._wrapped_model = self._model
|
||||
|
||||
return self._wrapped_model
|
||||
|
||||
@property
|
||||
def optimizer(self):
|
||||
# TODO make optimizer class and configurations
|
||||
if self._optimizer is None:
|
||||
num_parameters = 0
|
||||
p_wd, p_non_wd = [], []
|
||||
for n, p in self.model.named_parameters():
|
||||
if not p.requires_grad:
|
||||
continue # frozen weights
|
||||
print(n)
|
||||
if p.ndim < 2 or "bias" in n or "ln" in n or "bn" in n:
|
||||
p_non_wd.append(p)
|
||||
else:
|
||||
p_wd.append(p)
|
||||
num_parameters += p.data.nelement()
|
||||
logging.info("number of trainable parameters: %d" % num_parameters)
|
||||
optim_params = [
|
||||
{
|
||||
"params": p_wd,
|
||||
"weight_decay": float(self.config.run_cfg.weight_decay),
|
||||
},
|
||||
{"params": p_non_wd, "weight_decay": 0},
|
||||
]
|
||||
beta2 = self.config.run_cfg.get("beta2", 0.999)
|
||||
self._optimizer = torch.optim.AdamW(
|
||||
optim_params,
|
||||
lr=float(self.config.run_cfg.init_lr),
|
||||
weight_decay=float(self.config.run_cfg.weight_decay),
|
||||
betas=(0.9, beta2),
|
||||
)
|
||||
|
||||
return self._optimizer
|
||||
|
||||
@property
|
||||
def scaler(self):
|
||||
amp = self.config.run_cfg.get("amp", False)
|
||||
|
||||
if amp:
|
||||
if self._scaler is None:
|
||||
self._scaler = torch.cuda.amp.GradScaler()
|
||||
|
||||
return self._scaler
|
||||
|
||||
@property
|
||||
def lr_scheduler(self):
|
||||
"""
|
||||
A property to get and create learning rate scheduler by split just in need.
|
||||
"""
|
||||
if self._lr_sched is None:
|
||||
lr_sched_cls = registry.get_lr_scheduler_class(self.config.run_cfg.lr_sched)
|
||||
|
||||
# max_epoch = self.config.run_cfg.max_epoch
|
||||
max_epoch = self.max_epoch
|
||||
# min_lr = self.config.run_cfg.min_lr
|
||||
min_lr = self.min_lr
|
||||
# init_lr = self.config.run_cfg.init_lr
|
||||
init_lr = self.init_lr
|
||||
|
||||
# optional parameters
|
||||
decay_rate = self.config.run_cfg.get("lr_decay_rate", None)
|
||||
warmup_start_lr = self.config.run_cfg.get("warmup_lr", -1)
|
||||
warmup_steps = self.config.run_cfg.get("warmup_steps", 0)
|
||||
iters_per_epoch = self.config.run_cfg.get("iters_per_epoch", None)
|
||||
|
||||
if iters_per_epoch is None:
|
||||
try:
|
||||
iters_per_epoch = len(self.dataloaders['train'])
|
||||
except (AttributeError, TypeError):
|
||||
iters_per_epoch = 10000
|
||||
|
||||
self._lr_sched = lr_sched_cls(
|
||||
optimizer=self.optimizer,
|
||||
max_epoch=max_epoch,
|
||||
iters_per_epoch=iters_per_epoch,
|
||||
min_lr=min_lr,
|
||||
init_lr=init_lr,
|
||||
decay_rate=decay_rate,
|
||||
warmup_start_lr=warmup_start_lr,
|
||||
warmup_steps=warmup_steps,
|
||||
)
|
||||
|
||||
return self._lr_sched
|
||||
|
||||
@property
|
||||
def dataloaders(self) -> dict:
|
||||
"""
|
||||
A property to get and create dataloaders by split just in need.
|
||||
|
||||
If no train_dataset_ratio is provided, concatenate map-style datasets and
|
||||
chain wds.DataPipe datasets separately. Training set becomes a tuple
|
||||
(ConcatDataset, ChainDataset), both are optional but at least one of them is
|
||||
required. The resultant ConcatDataset and ChainDataset will be sampled evenly.
|
||||
|
||||
If train_dataset_ratio is provided, create a MultiIterLoader to sample
|
||||
each dataset by ratios during training.
|
||||
|
||||
Currently do not support multiple datasets for validation and test.
|
||||
|
||||
Returns:
|
||||
dict: {split_name: (tuples of) dataloader}
|
||||
"""
|
||||
if self._dataloaders is None:
|
||||
|
||||
# concatenate map-style datasets and chain wds.DataPipe datasets separately
|
||||
# training set becomes a tuple (ConcatDataset, ChainDataset), both are
|
||||
# optional but at least one of them is required. The resultant ConcatDataset
|
||||
# and ChainDataset will be sampled evenly.
|
||||
logging.info(
|
||||
"dataset_ratios not specified, datasets will be concatenated (map-style datasets) or chained (webdataset.DataPipeline)."
|
||||
)
|
||||
|
||||
datasets = reorg_datasets_by_split(self.datasets)
|
||||
self.datasets = datasets
|
||||
# self.datasets = concat_datasets(datasets)
|
||||
|
||||
# print dataset statistics after concatenation/chaining
|
||||
for split_name in self.datasets:
|
||||
if isinstance(self.datasets[split_name], tuple) or isinstance(
|
||||
self.datasets[split_name], list
|
||||
):
|
||||
# mixed wds.DataPipeline and torch.utils.data.Dataset
|
||||
num_records = sum(
|
||||
[
|
||||
len(d)
|
||||
if not type(d) in [wds.DataPipeline, ChainDataset]
|
||||
else 0
|
||||
for d in self.datasets[split_name]
|
||||
]
|
||||
)
|
||||
|
||||
else:
|
||||
if hasattr(self.datasets[split_name], "__len__"):
|
||||
# a single map-style dataset
|
||||
num_records = len(self.datasets[split_name])
|
||||
else:
|
||||
# a single wds.DataPipeline
|
||||
num_records = -1
|
||||
logging.info(
|
||||
"Only a single wds.DataPipeline dataset, no __len__ attribute."
|
||||
)
|
||||
|
||||
if num_records >= 0:
|
||||
logging.info(
|
||||
"Loaded {} records for {} split from the dataset.".format(
|
||||
num_records, split_name
|
||||
)
|
||||
)
|
||||
|
||||
# create dataloaders
|
||||
split_names = sorted(self.datasets.keys())
|
||||
|
||||
datasets = [self.datasets[split] for split in split_names]
|
||||
is_trains = [split in self.train_splits for split in split_names]
|
||||
|
||||
batch_sizes = [
|
||||
self.config.run_cfg.batch_size_train
|
||||
if split == "train"
|
||||
else self.config.run_cfg.batch_size_eval
|
||||
for split in split_names
|
||||
]
|
||||
|
||||
collate_fns = []
|
||||
for dataset in datasets:
|
||||
if isinstance(dataset, tuple) or isinstance(dataset, list):
|
||||
collate_fns.append([getattr(d, "collater", None) for d in dataset])
|
||||
else:
|
||||
collate_fns.append(getattr(dataset, "collater", None))
|
||||
|
||||
dataloaders = self.create_loaders(
|
||||
datasets=datasets,
|
||||
num_workers=self.config.run_cfg.num_workers,
|
||||
batch_sizes=batch_sizes,
|
||||
is_trains=is_trains,
|
||||
collate_fns=collate_fns,
|
||||
)
|
||||
|
||||
self._dataloaders = {k: v for k, v in zip(split_names, dataloaders)}
|
||||
|
||||
return self._dataloaders
|
||||
|
||||
@property
|
||||
def cuda_enabled(self):
|
||||
return self.device.type == "cuda"
|
||||
|
||||
@property
|
||||
def max_epoch(self):
|
||||
return int(self.config.run_cfg.max_epoch)
|
||||
|
||||
@property
|
||||
def log_freq(self):
|
||||
log_freq = self.config.run_cfg.get("log_freq", 50)
|
||||
return int(log_freq)
|
||||
|
||||
@property
|
||||
def init_lr(self):
|
||||
return float(self.config.run_cfg.init_lr)
|
||||
|
||||
@property
|
||||
def min_lr(self):
|
||||
return float(self.config.run_cfg.min_lr)
|
||||
|
||||
@property
|
||||
def accum_grad_iters(self):
|
||||
return int(self.config.run_cfg.get("accum_grad_iters", 1))
|
||||
|
||||
@property
|
||||
def valid_splits(self):
|
||||
valid_splits = self.config.run_cfg.get("valid_splits", [])
|
||||
|
||||
if len(valid_splits) == 0:
|
||||
logging.info("No validation splits found.")
|
||||
|
||||
return valid_splits
|
||||
|
||||
@property
|
||||
def test_splits(self):
|
||||
test_splits = self.config.run_cfg.get("test_splits", [])
|
||||
|
||||
return test_splits
|
||||
|
||||
@property
|
||||
def train_splits(self):
|
||||
train_splits = self.config.run_cfg.get("train_splits", [])
|
||||
|
||||
if len(train_splits) == 0:
|
||||
logging.info("Empty train splits.")
|
||||
|
||||
return train_splits
|
||||
|
||||
@property
|
||||
def evaluate_only(self):
|
||||
"""
|
||||
Set to True to skip training.
|
||||
"""
|
||||
return self.config.run_cfg.evaluate
|
||||
|
||||
@property
|
||||
def use_dist_eval_sampler(self):
|
||||
return self.config.run_cfg.get("use_dist_eval_sampler", True)
|
||||
|
||||
@property
|
||||
def resume_ckpt_path(self):
|
||||
return self.config.run_cfg.get("resume_ckpt_path", None)
|
||||
|
||||
@property
|
||||
def train_loader(self):
|
||||
train_dataloader = self.dataloaders["train"]
|
||||
|
||||
return train_dataloader
|
||||
|
||||
def setup_output_dir(self):
|
||||
lib_root = Path(registry.get_path("library_root"))
|
||||
|
||||
output_dir = lib_root / self.config.run_cfg.output_dir / self.job_id
|
||||
result_dir = output_dir / "result"
|
||||
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
result_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
registry.register_path("result_dir", str(result_dir))
|
||||
registry.register_path("output_dir", str(output_dir))
|
||||
|
||||
self.result_dir = result_dir
|
||||
self.output_dir = output_dir
|
||||
|
||||
def train(self):
|
||||
start_time = time.time()
|
||||
best_agg_metric = 0
|
||||
best_epoch = 0
|
||||
|
||||
self.log_config()
|
||||
|
||||
# resume from checkpoint if specified
|
||||
if not self.evaluate_only and self.resume_ckpt_path is not None:
|
||||
self._load_checkpoint(self.resume_ckpt_path)
|
||||
|
||||
for cur_epoch in range(self.start_epoch, self.max_epoch):
|
||||
# training phase
|
||||
if not self.evaluate_only:
|
||||
logging.info("Start training")
|
||||
train_stats = self.train_epoch(cur_epoch)
|
||||
self.log_stats(split_name="train", stats=train_stats)
|
||||
|
||||
# evaluation phase
|
||||
if len(self.valid_splits) > 0:
|
||||
for split_name in self.valid_splits:
|
||||
logging.info("Evaluating on {}.".format(split_name))
|
||||
|
||||
val_log = self.eval_epoch(
|
||||
split_name=split_name, cur_epoch=cur_epoch
|
||||
)
|
||||
if val_log is not None:
|
||||
if is_main_process():
|
||||
assert (
|
||||
"agg_metrics" in val_log
|
||||
), "No agg_metrics found in validation log."
|
||||
|
||||
agg_metrics = val_log["agg_metrics"]
|
||||
if agg_metrics > best_agg_metric and split_name == "val":
|
||||
best_epoch, best_agg_metric = cur_epoch, agg_metrics
|
||||
|
||||
self._save_checkpoint(cur_epoch, is_best=True)
|
||||
|
||||
val_log.update({"best_epoch": best_epoch})
|
||||
self.log_stats(val_log, split_name)
|
||||
|
||||
else:
|
||||
# if no validation split is provided, we just save the checkpoint at the end of each epoch.
|
||||
if not self.evaluate_only:
|
||||
self._save_checkpoint(cur_epoch, is_best=False)
|
||||
|
||||
if self.evaluate_only:
|
||||
break
|
||||
|
||||
if self.config.run_cfg.distributed:
|
||||
dist.barrier()
|
||||
|
||||
# testing phase
|
||||
test_epoch = "best" if len(self.valid_splits) > 0 else cur_epoch
|
||||
self.evaluate(cur_epoch=test_epoch, skip_reload=self.evaluate_only)
|
||||
|
||||
total_time = time.time() - start_time
|
||||
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
|
||||
logging.info("Training time {}".format(total_time_str))
|
||||
|
||||
def evaluate(self, cur_epoch="best", skip_reload=False):
|
||||
test_logs = dict()
|
||||
|
||||
if len(self.test_splits) > 0:
|
||||
for split_name in self.test_splits:
|
||||
test_logs[split_name] = self.eval_epoch(
|
||||
split_name=split_name, cur_epoch=cur_epoch, skip_reload=skip_reload
|
||||
)
|
||||
|
||||
return test_logs
|
||||
|
||||
def train_epoch(self, epoch):
|
||||
# train
|
||||
self.model.train()
|
||||
|
||||
return self.task.train_epoch(
|
||||
epoch=epoch,
|
||||
model=self.model,
|
||||
data_loader=self.train_loader,
|
||||
optimizer=self.optimizer,
|
||||
scaler=self.scaler,
|
||||
lr_scheduler=self.lr_scheduler,
|
||||
cuda_enabled=self.cuda_enabled,
|
||||
log_freq=self.log_freq,
|
||||
accum_grad_iters=self.accum_grad_iters,
|
||||
)
|
||||
|
||||
@torch.no_grad()
|
||||
def eval_epoch(self, split_name, cur_epoch, skip_reload=False):
|
||||
"""
|
||||
Evaluate the model on a given split.
|
||||
|
||||
Args:
|
||||
split_name (str): name of the split to evaluate on.
|
||||
cur_epoch (int): current epoch.
|
||||
skip_reload_best (bool): whether to skip reloading the best checkpoint.
|
||||
During training, we will reload the best checkpoint for validation.
|
||||
During testing, we will use provided weights and skip reloading the best checkpoint .
|
||||
"""
|
||||
data_loader = self.dataloaders.get(split_name, None)
|
||||
assert data_loader, "data_loader for split {} is None.".format(split_name)
|
||||
|
||||
# TODO In validation, you need to compute loss as well as metrics
|
||||
# TODO consider moving to model.before_evaluation()
|
||||
model = self.unwrap_dist_model(self.model)
|
||||
if not skip_reload and cur_epoch == "best":
|
||||
model = self._reload_best_model(model)
|
||||
model.eval()
|
||||
|
||||
self.task.before_evaluation(
|
||||
model=model,
|
||||
dataset=self.datasets[split_name],
|
||||
)
|
||||
results = self.task.evaluation(model, data_loader)
|
||||
|
||||
if results is not None:
|
||||
return self.task.after_evaluation(
|
||||
val_result=results,
|
||||
split_name=split_name,
|
||||
epoch=cur_epoch,
|
||||
)
|
||||
|
||||
def unwrap_dist_model(self, model):
|
||||
if self.use_distributed:
|
||||
return model.module
|
||||
else:
|
||||
return model
|
||||
|
||||
def create_loaders(
|
||||
self,
|
||||
datasets,
|
||||
num_workers,
|
||||
batch_sizes,
|
||||
is_trains,
|
||||
collate_fns,
|
||||
dataset_ratios=None,
|
||||
):
|
||||
"""
|
||||
Create dataloaders for training and validation.
|
||||
"""
|
||||
|
||||
def _create_loader(dataset, num_workers, bsz, is_train, collate_fn):
|
||||
# create a single dataloader for each split
|
||||
if isinstance(dataset, ChainDataset) or isinstance(
|
||||
dataset, wds.DataPipeline
|
||||
):
|
||||
# wds.WebdDataset instance are chained together
|
||||
# webdataset.DataPipeline has its own sampler and collate_fn
|
||||
loader = iter(
|
||||
DataLoader(
|
||||
dataset,
|
||||
batch_size=bsz,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True,
|
||||
)
|
||||
)
|
||||
else:
|
||||
# map-style dataset are concatenated together
|
||||
# setup distributed sampler
|
||||
if self.use_distributed:
|
||||
sampler = DistributedSampler(
|
||||
dataset,
|
||||
shuffle=is_train,
|
||||
num_replicas=get_world_size(),
|
||||
rank=get_rank(),
|
||||
)
|
||||
if not self.use_dist_eval_sampler:
|
||||
# e.g. retrieval evaluation
|
||||
sampler = sampler if is_train else None
|
||||
else:
|
||||
sampler = None
|
||||
|
||||
loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=bsz,
|
||||
num_workers=num_workers,
|
||||
pin_memory=True,
|
||||
sampler=sampler,
|
||||
shuffle=sampler is None and is_train,
|
||||
collate_fn=collate_fn,
|
||||
drop_last=True if is_train else False,
|
||||
)
|
||||
loader = PrefetchLoader(loader)
|
||||
|
||||
if is_train:
|
||||
loader = IterLoader(loader, use_distributed=self.use_distributed)
|
||||
|
||||
return loader
|
||||
|
||||
loaders = []
|
||||
|
||||
for dataset, bsz, is_train, collate_fn in zip(
|
||||
datasets, batch_sizes, is_trains, collate_fns
|
||||
):
|
||||
if isinstance(dataset, list) or isinstance(dataset, tuple):
|
||||
if hasattr(dataset[0], 'sample_ratio') and dataset_ratios is None:
|
||||
dataset_ratios = [d.sample_ratio for d in dataset]
|
||||
loader = MultiIterLoader(
|
||||
loaders=[
|
||||
_create_loader(d, num_workers, bsz, is_train, collate_fn[i])
|
||||
for i, d in enumerate(dataset)
|
||||
],
|
||||
ratios=dataset_ratios,
|
||||
)
|
||||
else:
|
||||
loader = _create_loader(dataset, num_workers, bsz, is_train, collate_fn)
|
||||
|
||||
loaders.append(loader)
|
||||
|
||||
return loaders
|
||||
|
||||
@main_process
|
||||
def _save_checkpoint(self, cur_epoch, is_best=False):
|
||||
"""
|
||||
Save the checkpoint at the current epoch.
|
||||
"""
|
||||
model_no_ddp = self.unwrap_dist_model(self.model)
|
||||
param_grad_dic = {
|
||||
k: v.requires_grad for (k, v) in model_no_ddp.named_parameters()
|
||||
}
|
||||
state_dict = model_no_ddp.state_dict()
|
||||
for k in list(state_dict.keys()):
|
||||
if k in param_grad_dic.keys() and not param_grad_dic[k]:
|
||||
# delete parameters that do not require gradient
|
||||
del state_dict[k]
|
||||
save_obj = {
|
||||
"model": state_dict,
|
||||
"optimizer": self.optimizer.state_dict(),
|
||||
"config": self.config.to_dict(),
|
||||
"scaler": self.scaler.state_dict() if self.scaler else None,
|
||||
"epoch": cur_epoch,
|
||||
}
|
||||
save_to = os.path.join(
|
||||
self.output_dir,
|
||||
"checkpoint_{}.pth".format("best" if is_best else cur_epoch),
|
||||
)
|
||||
logging.info("Saving checkpoint at epoch {} to {}.".format(cur_epoch, save_to))
|
||||
torch.save(save_obj, save_to)
|
||||
|
||||
def _reload_best_model(self, model):
|
||||
"""
|
||||
Load the best checkpoint for evaluation.
|
||||
"""
|
||||
checkpoint_path = os.path.join(self.output_dir, "checkpoint_best.pth")
|
||||
|
||||
logging.info("Loading checkpoint from {}.".format(checkpoint_path))
|
||||
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
||||
try:
|
||||
model.load_state_dict(checkpoint["model"])
|
||||
except RuntimeError as e:
|
||||
logging.warning(
|
||||
"""
|
||||
Key mismatch when loading checkpoint. This is expected if only part of the model is saved.
|
||||
Trying to load the model with strict=False.
|
||||
"""
|
||||
)
|
||||
model.load_state_dict(checkpoint["model"], strict=False)
|
||||
return model
|
||||
|
||||
def _load_checkpoint(self, url_or_filename):
|
||||
"""
|
||||
Resume from a checkpoint.
|
||||
"""
|
||||
if is_url(url_or_filename):
|
||||
cached_file = download_cached_file(
|
||||
url_or_filename, check_hash=False, progress=True
|
||||
)
|
||||
checkpoint = torch.load(cached_file, map_location=self.device)
|
||||
elif os.path.isfile(url_or_filename):
|
||||
checkpoint = torch.load(url_or_filename, map_location=self.device)
|
||||
else:
|
||||
raise RuntimeError("checkpoint url or path is invalid")
|
||||
|
||||
state_dict = checkpoint["model"]
|
||||
self.unwrap_dist_model(self.model).load_state_dict(state_dict,strict=False)
|
||||
|
||||
self.optimizer.load_state_dict(checkpoint["optimizer"])
|
||||
if self.scaler and "scaler" in checkpoint:
|
||||
self.scaler.load_state_dict(checkpoint["scaler"])
|
||||
|
||||
self.start_epoch = checkpoint["epoch"] + 1
|
||||
logging.info("Resume checkpoint from {}".format(url_or_filename))
|
||||
|
||||
@main_process
|
||||
def log_stats(self, stats, split_name):
|
||||
if isinstance(stats, dict):
|
||||
log_stats = {**{f"{split_name}_{k}": v for k, v in stats.items()}}
|
||||
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
|
||||
f.write(json.dumps(log_stats) + "\n")
|
||||
elif isinstance(stats, list):
|
||||
pass
|
||||
|
||||
@main_process
|
||||
def log_config(self):
|
||||
with open(os.path.join(self.output_dir, "log.txt"), "a") as f:
|
||||
f.write(json.dumps(self.config.to_dict(), indent=4) + "\n")
|
Reference in New Issue
Block a user