add readme (#10)
* Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * Update Readme.md * remove submodule * add mPLUG MiniGPT4 * Update Readme.md * Update Readme.md * Update Readme.md --------- Co-authored-by: Yuliang Liu <34134635+Yuliang-Liu@users.noreply.github.com>
This commit is contained in:
141
models/MiniGPT4/minigpt4/processors/blip_processors.py
Normal file
141
models/MiniGPT4/minigpt4/processors/blip_processors.py
Normal file
@@ -0,0 +1,141 @@
|
||||
"""
|
||||
Copyright (c) 2022, salesforce.com, inc.
|
||||
All rights reserved.
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
For full license text, see the LICENSE_Lavis file in the repo root or https://opensource.org/licenses/BSD-3-Clause
|
||||
"""
|
||||
|
||||
import re
|
||||
|
||||
from minigpt4.common.registry import registry
|
||||
from minigpt4.processors.base_processor import BaseProcessor
|
||||
from minigpt4.processors.randaugment import RandomAugment
|
||||
from omegaconf import OmegaConf
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
|
||||
|
||||
class BlipImageBaseProcessor(BaseProcessor):
|
||||
def __init__(self, mean=None, std=None):
|
||||
if mean is None:
|
||||
mean = (0.48145466, 0.4578275, 0.40821073)
|
||||
if std is None:
|
||||
std = (0.26862954, 0.26130258, 0.27577711)
|
||||
|
||||
self.normalize = transforms.Normalize(mean, std)
|
||||
|
||||
|
||||
@registry.register_processor("blip_caption")
|
||||
class BlipCaptionProcessor(BaseProcessor):
|
||||
def __init__(self, prompt="", max_words=50):
|
||||
self.prompt = prompt
|
||||
self.max_words = max_words
|
||||
|
||||
def __call__(self, caption):
|
||||
caption = self.prompt + self.pre_caption(caption)
|
||||
|
||||
return caption
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg=None):
|
||||
if cfg is None:
|
||||
cfg = OmegaConf.create()
|
||||
|
||||
prompt = cfg.get("prompt", "")
|
||||
max_words = cfg.get("max_words", 50)
|
||||
|
||||
return cls(prompt=prompt, max_words=max_words)
|
||||
|
||||
def pre_caption(self, caption):
|
||||
caption = re.sub(
|
||||
r"([.!\"()*#:;~])",
|
||||
" ",
|
||||
caption.lower(),
|
||||
)
|
||||
caption = re.sub(
|
||||
r"\s{2,}",
|
||||
" ",
|
||||
caption,
|
||||
)
|
||||
caption = caption.rstrip("\n")
|
||||
caption = caption.strip(" ")
|
||||
|
||||
# truncate caption
|
||||
caption_words = caption.split(" ")
|
||||
if len(caption_words) > self.max_words:
|
||||
caption = " ".join(caption_words[: self.max_words])
|
||||
|
||||
return caption
|
||||
|
||||
|
||||
@registry.register_processor("blip2_image_train")
|
||||
class Blip2ImageTrainProcessor(BlipImageBaseProcessor):
|
||||
def __init__(self, image_size=224, mean=None, std=None, min_scale=0.5, max_scale=1.0):
|
||||
super().__init__(mean=mean, std=std)
|
||||
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.RandomResizedCrop(
|
||||
image_size,
|
||||
scale=(min_scale, max_scale),
|
||||
interpolation=InterpolationMode.BICUBIC,
|
||||
),
|
||||
transforms.ToTensor(),
|
||||
self.normalize,
|
||||
]
|
||||
)
|
||||
|
||||
def __call__(self, item):
|
||||
return self.transform(item)
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg=None):
|
||||
if cfg is None:
|
||||
cfg = OmegaConf.create()
|
||||
|
||||
image_size = cfg.get("image_size", 224)
|
||||
|
||||
mean = cfg.get("mean", None)
|
||||
std = cfg.get("std", None)
|
||||
|
||||
min_scale = cfg.get("min_scale", 0.5)
|
||||
max_scale = cfg.get("max_scale", 1.0)
|
||||
|
||||
return cls(
|
||||
image_size=image_size,
|
||||
mean=mean,
|
||||
std=std,
|
||||
min_scale=min_scale,
|
||||
max_scale=max_scale,
|
||||
)
|
||||
|
||||
|
||||
@registry.register_processor("blip2_image_eval")
|
||||
class Blip2ImageEvalProcessor(BlipImageBaseProcessor):
|
||||
def __init__(self, image_size=224, mean=None, std=None):
|
||||
super().__init__(mean=mean, std=std)
|
||||
|
||||
self.transform = transforms.Compose(
|
||||
[
|
||||
transforms.Resize(
|
||||
(image_size, image_size), interpolation=InterpolationMode.BICUBIC
|
||||
),
|
||||
transforms.ToTensor(),
|
||||
self.normalize,
|
||||
]
|
||||
)
|
||||
|
||||
def __call__(self, item):
|
||||
return self.transform(item)
|
||||
|
||||
@classmethod
|
||||
def from_config(cls, cfg=None):
|
||||
if cfg is None:
|
||||
cfg = OmegaConf.create()
|
||||
|
||||
image_size = cfg.get("image_size", 224)
|
||||
|
||||
mean = cfg.get("mean", None)
|
||||
std = cfg.get("std", None)
|
||||
|
||||
return cls(image_size=image_size, mean=mean, std=std)
|
Reference in New Issue
Block a user