Files
MultimodalOCR/models/mPLUG_Owl/pipeline/utils.py

156 lines
6.0 KiB
Python
Raw Normal View History

import math
import random
import torch
import numpy as np
from icecream import ic
def print_rank_0(message):
"""If distributed is initialized, print only on rank 0."""
if torch.distributed.is_initialized():
if torch.distributed.get_rank() == 0:
print(message, flush=True)
else:
print(message, flush=True)
ARGS = None
def set_args(args):
global ARGS
ARGS = args
def get_args():
return ARGS
TOKENIZER = None
def set_tokenizer(tokenizer):
global TOKENIZER
TOKENIZER = tokenizer
def get_tokenizer():
return TOKENIZER
from torch import distributed as dist
class worker_init:
def __init__(self, epoch_id):
self.epoch_id = epoch_id
def _worker_init_fn(self, worker_id):
random.seed(worker_id + self.epoch_id*1e4 + dist.get_rank()*1e8)
def batchify(batch):
# collate_fn
# image = torch.cat([data["image"] for data in batch], dim=0)
image = [data["image"] if data["image"] is not None else None for data in batch]
if all([img is None for img in image]):
image = None
else:
image = torch.cat([img for img in image if img is not None], dim=0)
num_images_per_sample = torch.LongTensor([data["image"].size(0) if data['image'] is not None else 0 for data in batch])
text = torch.stack([torch.LongTensor(data["text"]['input_ids']) for data in batch], dim=0)
non_padding_mask = torch.stack([torch.LongTensor(data["text"]['non_padding_mask']) for data in batch], dim=0)
non_media_mask = torch.stack([torch.LongTensor(data["text"]['non_media_mask']) for data in batch], dim=0)
prompt_mask = torch.stack([torch.LongTensor(data["text"]['prompt_mask']) for data in batch], dim=0)
prompt_length = torch.from_numpy(np.stack([data["text"]["prompt_length"] for data in batch]))
seq_length = torch.from_numpy(np.stack([data["text"]["seq_length"] for data in batch]))
output_batch = {
"pixel_values": image,
"input_ids": text.long(),
"labels": text.long().clone(),
"num_images": num_images_per_sample.long(),
"non_padding_mask": non_padding_mask.long(),
"non_media_mask": non_media_mask.long(),
"prompt_mask": prompt_mask.long()
}
return output_batch
def get_param_groups(modules,
no_weight_decay_cond,
scale_lr_cond,
lr_mult):
"""creates param groups based on weight decay condition (regularized vs non regularized)
and learning rate scale condition (args.lr vs lr_mult * args.lr)
scale_lr_cond is used during finetuning where head of the network requires a scaled
version of the base learning rate.
"""
wd_no_scale_lr = []
wd_scale_lr = []
no_wd_no_scale_lr = []
no_wd_scale_lr = []
for module in modules:
for name, param in module.named_parameters():
if not param.requires_grad:
continue
if no_weight_decay_cond is not None:
no_wd = no_weight_decay_cond(name, param)
else:
# do not regularize biases nor Norm parameters
no_wd = name.endswith(".bias") or len(param.shape) == 1
if scale_lr_cond is not None:
scale_lr = scale_lr_cond(name, param)
else:
scale_lr = False
if not no_wd and not scale_lr:
wd_no_scale_lr.append(param)
elif not no_wd and scale_lr:
wd_scale_lr.append(param)
elif no_wd and not scale_lr:
no_wd_no_scale_lr.append(param)
else:
no_wd_scale_lr.append(param)
param_groups = []
if len(wd_no_scale_lr):
param_groups.append(
{'params': wd_no_scale_lr, 'wd_mult': 1.0, 'lr_mult': 1.0})
if len(wd_scale_lr):
param_groups.append(
{'params': wd_scale_lr, 'wd_mult': 1.0, 'lr_mult': lr_mult})
if len(no_wd_no_scale_lr):
param_groups.append({'params': no_wd_no_scale_lr,
'wd_mult': 0.0, 'lr_mult': 1.0})
if len(no_wd_scale_lr):
param_groups.append(
{'params': no_wd_scale_lr, 'wd_mult': 0.0, 'lr_mult': lr_mult})
return param_groups
def get_cosine_schedule_with_warmup(
optimizer, lr, min_lr, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
):
"""
Create a schedule with a learning rate that decreases following the values of the cosine function between the
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
initial lr set in the optimizer.
Args:
optimizer ([`~torch.optim.Optimizer`]):
The optimizer for which to schedule the learning rate.
num_warmup_steps (`int`):
The number of steps for the warmup phase.
num_training_steps (`int`):
The total number of training steps.
num_cycles (`float`, *optional*, defaults to 0.5):
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
following a half-cosine).
last_epoch (`int`, *optional*, defaults to -1):
The index of the last epoch when resuming training.
Return:
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
"""
delta_min_lr = (lr-min_lr)/lr # 0.95
def lr_lambda(current_step):
if current_step < num_warmup_steps:
return (1-delta_min_lr) + delta_min_lr * float(current_step) / float(max(1, num_warmup_steps))
progress = float(current_step - num_warmup_steps) / \
float(max(1, num_training_steps - num_warmup_steps))
return delta_min_lr + (1-delta_min_lr) * max(0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
from torch.optim.lr_scheduler import LambdaLR
return LambdaLR(optimizer, lr_lambda, last_epoch)