216 lines
8.9 KiB
Python
216 lines
8.9 KiB
Python
![]() |
import argparse
|
||
|
from functools import partial
|
||
|
|
||
|
import torch
|
||
|
import torch.distributed as dist
|
||
|
from torch.utils.data import DataLoader, Dataset
|
||
|
from torch.utils.data.distributed import DistributedSampler
|
||
|
|
||
|
from sconf import Config
|
||
|
from icecream import ic
|
||
|
from peft import LoraConfig, get_peft_config, get_peft_model
|
||
|
from transformers import Trainer
|
||
|
from transformers.training_args import TrainingArguments
|
||
|
|
||
|
from mplug_owl import MplugOwlForConditionalGeneration, MplugOwlTokenizer
|
||
|
from pipeline.data_utils import train_valid_test_datasets_provider
|
||
|
from pipeline.utils import batchify, set_args
|
||
|
|
||
|
|
||
|
parser = argparse.ArgumentParser()
|
||
|
# Model
|
||
|
parser.add_argument('--pretrained-ckpt', type=str, default='MAGAer13/mplug-owl-llama-7b-pt',
|
||
|
help='Path to the pretrained checkpoint.')
|
||
|
parser.add_argument('--inference_mode', type=bool, default=False,
|
||
|
help='The inference mode.')
|
||
|
parser.add_argument('--seq-length', type=int, default=1024,
|
||
|
help='Maximum sequence length to process.')
|
||
|
parser.add_argument('--use-lora', action='store_true', help='LORA.')
|
||
|
parser.add_argument('--lora-r', type=int, default=8,
|
||
|
help='curvature.')
|
||
|
parser.add_argument('--lora-alpha', type=int, default=32,
|
||
|
help='The initialization coefficient of lora-alpha.')
|
||
|
parser.add_argument('--lora-dropout', type=int, default=0.05,
|
||
|
help='The initialization coefficient of lora_dropout.')
|
||
|
parser.add_argument('--bf16', action='store_true', default=True,
|
||
|
help='Run model in bfloat16 mode.')
|
||
|
|
||
|
# Data
|
||
|
parser.add_argument('--mm-config', type=str, default=None, help='Multimodal Config.')
|
||
|
parser.add_argument('--num-workers', type=int, default=8,
|
||
|
help="Dataloader number of workers.")
|
||
|
|
||
|
# Training HyperParameters
|
||
|
parser.add_argument('--train-epochs', type=int, default=3,
|
||
|
help='Total number of epochs to train over all '
|
||
|
'training runs.')
|
||
|
parser.add_argument('--micro-batch-size', type=int, default=None,
|
||
|
help='Batch size per model instance (local batch size). '
|
||
|
'Global batch size is local batch size times data '
|
||
|
'parallel size times number of micro batches.')
|
||
|
parser.add_argument('--lr', type=float, default=None,
|
||
|
help='Initial learning rate. Depending on decay style '
|
||
|
'and initial warmup, the learing rate at each '
|
||
|
'iteration would be different.')
|
||
|
parser.add_argument('--min-lr', type=float, default=1e-6,
|
||
|
help='Minumum value for learning rate. The scheduler'
|
||
|
'clip values below this threshold.')
|
||
|
parser.add_argument('--weight-decay', type=float, default=0.01,
|
||
|
help='Weight decay coefficient for L2 regularization.')
|
||
|
parser.add_argument('--gradient-accumulation-steps', type=int, default=8,
|
||
|
help='The gradient accumulation steps.')
|
||
|
parser.add_argument('--clip-grad', type=float, default=1.0,
|
||
|
help='Gradient clipping based on global L2 norm.')
|
||
|
parser.add_argument('--adam-beta1', type=float, default=0.9,
|
||
|
help='First coefficient for computing running averages '
|
||
|
'of gradient and its square')
|
||
|
parser.add_argument('--adam-beta2', type=float, default=0.999,
|
||
|
help='Second coefficient for computing running averages '
|
||
|
'of gradient and its square')
|
||
|
parser.add_argument('--adam-eps', type=float, default=1e-08,
|
||
|
help='Term added to the denominator to improve'
|
||
|
'numerical stability')
|
||
|
|
||
|
parser.add_argument('--num-warmup-steps', type=int, default=50,
|
||
|
help='The number of warmup steps.')
|
||
|
parser.add_argument('--num-training-steps', type=int, default=4236,
|
||
|
help='The number of total training steps for lr scheduler.')
|
||
|
|
||
|
# Evaluation & Save
|
||
|
parser.add_argument('--save-path', type=str, default=None,
|
||
|
help='Output directory to save checkpoints to.')
|
||
|
parser.add_argument('--save-interval', type=int, default=None,
|
||
|
help='Number of iterations between checkpoint saves.')
|
||
|
parser.add_argument('--eval-iters', type=int, default=100,
|
||
|
help='Number of iterations to run for evaluation'
|
||
|
'validation/test for.')
|
||
|
|
||
|
# Other
|
||
|
parser.add_argument('--gradient-checkpointing', action='store_true',
|
||
|
help='The gradient checkpointing.')
|
||
|
parser.add_argument('--logging-nan-inf-filter', action='store_true',
|
||
|
help='The logging nan inf filter.')
|
||
|
parser.add_argument('--ddp-find-unused-parameters', action='store_true',
|
||
|
help='unused parameters finding.')
|
||
|
parser.add_argument('--do-train', action='store_true', default=True,
|
||
|
help='Whether to do training.')
|
||
|
parser.add_argument('--local_rank', type=int, default=-1,
|
||
|
help='Local rank')
|
||
|
|
||
|
|
||
|
|
||
|
class CustomTrainer(Trainer):
|
||
|
def __init__(self, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
|
||
|
def get_train_dataloader(self) -> DataLoader:
|
||
|
dataset = self.train_dataset
|
||
|
sampler = DistributedSampler(dataset)
|
||
|
return torch.utils.data.DataLoader(
|
||
|
dataset, batch_size=self._train_batch_size,
|
||
|
sampler=sampler,
|
||
|
num_workers=self.args.dataloader_num_workers,
|
||
|
drop_last=True,
|
||
|
pin_memory=True,
|
||
|
collate_fn=batchify)
|
||
|
|
||
|
|
||
|
def get_eval_dataloader(self, eval_dataset: Dataset | None = None) -> DataLoader:
|
||
|
dataset = self.eval_dataset
|
||
|
sampler = DistributedSampler(dataset, shuffle=False)
|
||
|
return torch.utils.data.DataLoader(
|
||
|
dataset, batch_size=self._train_batch_size,
|
||
|
sampler=sampler,
|
||
|
num_workers=self.args.dataloader_num_workers,
|
||
|
drop_last=True,
|
||
|
pin_memory=True,
|
||
|
collate_fn=batchify)
|
||
|
|
||
|
|
||
|
def main():
|
||
|
args, left_argv = parser.parse_known_args()
|
||
|
ic(left_argv)
|
||
|
config = Config(args.mm_config)
|
||
|
|
||
|
set_args(args)
|
||
|
|
||
|
model = MplugOwlForConditionalGeneration.from_pretrained(
|
||
|
args.pretrained_ckpt,
|
||
|
torch_dtype=torch.bfloat16 if args.bf16 else torch.half,
|
||
|
)
|
||
|
tokenizer = MplugOwlTokenizer.from_pretrained(args.pretrained_ckpt)
|
||
|
|
||
|
if args.use_lora:
|
||
|
for param in model.parameters():
|
||
|
# freeze base model's layers
|
||
|
param.requires_grad = False
|
||
|
peft_config = LoraConfig(
|
||
|
target_modules=r'.*language_model.*\.(q_proj|v_proj)',
|
||
|
inference_mode=args.inference_mode,
|
||
|
r=args.lora_r,
|
||
|
lora_alpha=args.lora_alpha,
|
||
|
lora_dropout=args.lora_dropout
|
||
|
)
|
||
|
model = get_peft_model(model, peft_config)
|
||
|
model.print_trainable_parameters()
|
||
|
|
||
|
if args.gradient_checkpointing:
|
||
|
def make_inputs_require_grad(module, input, output):
|
||
|
output.requires_grad_(True)
|
||
|
model.language_model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
|
||
|
model.language_model.apply(
|
||
|
partial(model.language_model._set_gradient_checkpointing, value=True))
|
||
|
|
||
|
else:
|
||
|
for name, param in model.named_parameters():
|
||
|
if 'language_model' in name:
|
||
|
param.requires_grad = True
|
||
|
else:
|
||
|
param.requires_grad = False
|
||
|
if args.gradient_checkpointing:
|
||
|
model.language_model.apply(
|
||
|
partial(model.language_model._set_gradient_checkpointing, value=True))
|
||
|
|
||
|
model.train()
|
||
|
|
||
|
train_data, valid_data = train_valid_test_datasets_provider(
|
||
|
config.data_files, config=config,
|
||
|
tokenizer=tokenizer, seq_length=args.seq_length
|
||
|
)
|
||
|
|
||
|
trainer = CustomTrainer(
|
||
|
model=model,
|
||
|
train_dataset=train_data,
|
||
|
eval_dataset=valid_data,
|
||
|
args=TrainingArguments(
|
||
|
learning_rate=args.lr,
|
||
|
warmup_steps=args.num_warmup_steps,
|
||
|
do_train=args.do_train,
|
||
|
num_train_epochs=args.train_epochs,
|
||
|
output_dir=args.save_path,
|
||
|
save_strategy='steps',
|
||
|
save_steps=args.save_interval,
|
||
|
evaluation_strategy='steps',
|
||
|
eval_steps=args.eval_iters,
|
||
|
per_device_train_batch_size=args.micro_batch_size,
|
||
|
max_grad_norm=args.clip_grad,
|
||
|
weight_decay=args.weight_decay,
|
||
|
bf16=args.bf16,
|
||
|
fp16=not args.bf16,
|
||
|
gradient_accumulation_steps=args.gradient_accumulation_steps,
|
||
|
gradient_checkpointing=args.gradient_checkpointing,
|
||
|
logging_steps=args.eval_iters//4,
|
||
|
logging_nan_inf_filter=args.logging_nan_inf_filter,
|
||
|
ddp_find_unused_parameters=args.ddp_find_unused_parameters,
|
||
|
),
|
||
|
)
|
||
|
|
||
|
if torch.__version__ >= "2" and sys.platform != "win32":
|
||
|
model = torch.compile(model)
|
||
|
|
||
|
trainer.train()
|
||
|
|
||
|
model.save_pretrained(args.save_path)
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
main()
|