282 lines
16 KiB
Python
282 lines
16 KiB
Python
![]() |
# Copyright 2023 Haotian Liu
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
|
||
|
from typing import List, Optional, Tuple, Union
|
||
|
import warnings
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.nn.functional as F
|
||
|
from torch.nn import CrossEntropyLoss
|
||
|
|
||
|
import math
|
||
|
|
||
|
from transformers import AutoConfig, AutoModelForCausalLM, \
|
||
|
CLIPVisionModel, CLIPImageProcessor
|
||
|
|
||
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||
|
|
||
|
from .mpt.modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel
|
||
|
|
||
|
|
||
|
DEFAULT_IMAGE_TOKEN = "<image>"
|
||
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
||
|
DEFAULT_IM_START_TOKEN = "<im_start>"
|
||
|
DEFAULT_IM_END_TOKEN = "<im_end>"
|
||
|
|
||
|
|
||
|
class LlavaMPTConfig(MPTConfig):
|
||
|
model_type = "llava_mpt"
|
||
|
|
||
|
|
||
|
class LlavaMPTModel(MPTModel):
|
||
|
config_class = LlavaMPTConfig
|
||
|
|
||
|
def __init__(self, config: MPTConfig, mm_vision_tower=None, mm_hidden_size=None):
|
||
|
super(LlavaMPTModel, self).__init__(config)
|
||
|
|
||
|
if hasattr(config, "mm_vision_tower"):
|
||
|
# HACK: for FSDP
|
||
|
self.vision_tower = [CLIPVisionModel.from_pretrained(config.mm_vision_tower)]
|
||
|
# self.vision_tower = CLIPVisionModel.from_pretrained(config.mm_vision_tower)
|
||
|
|
||
|
if hasattr(config, "use_mm_proj"):
|
||
|
self.mm_projector = nn.Linear(config.mm_hidden_size, config.d_model)
|
||
|
|
||
|
def initialize_vision_modules(self, vision_tower, mm_vision_select_layer,
|
||
|
pretrain_mm_mlp_adapter=None, tune_mm_mlp_adapter=False):
|
||
|
self.config.mm_vision_tower = vision_tower
|
||
|
|
||
|
image_processor = CLIPImageProcessor.from_pretrained(vision_tower)
|
||
|
|
||
|
if not hasattr(self, 'vision_tower'):
|
||
|
vision_tower = CLIPVisionModel.from_pretrained(vision_tower)
|
||
|
else:
|
||
|
vision_tower = self.vision_tower[0]
|
||
|
vision_tower.requires_grad_(False)
|
||
|
vision_tower = vision_tower.to(torch.float16)
|
||
|
self.vision_tower = [vision_tower]
|
||
|
|
||
|
vision_config = vision_tower.config
|
||
|
num_patches = (vision_config.image_size // vision_config.patch_size) ** 2
|
||
|
|
||
|
self.config.use_mm_proj = True
|
||
|
self.config.mm_hidden_size = vision_config.hidden_size
|
||
|
self.config.mm_vision_select_layer = mm_vision_select_layer
|
||
|
|
||
|
if not hasattr(self, 'mm_projector'):
|
||
|
self.mm_projector = nn.Linear(vision_config.hidden_size, self.config.d_model)
|
||
|
|
||
|
if pretrain_mm_mlp_adapter is not None:
|
||
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
||
|
self.mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items() if 'mm_projector' in k})
|
||
|
|
||
|
return dict(
|
||
|
image_processor=image_processor,
|
||
|
image_token_len=num_patches,
|
||
|
vision_config=vision_config
|
||
|
)
|
||
|
|
||
|
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None):
|
||
|
|
||
|
# HACK: replace back original embeddings for LLaVA pretraining
|
||
|
orig_embeds_params = getattr(self, 'orig_embeds_params', None)
|
||
|
# if orig_embeds_params is not None:
|
||
|
# orig_embeds_params = orig_embeds_params[0]
|
||
|
# with torch.no_grad():
|
||
|
# self.get_input_embeddings().weight.data[:-2] = orig_embeds_params[:-2].data
|
||
|
|
||
|
inputs_embeds = self.wte(input_ids)
|
||
|
|
||
|
vision_tower = getattr(self, 'vision_tower', None)
|
||
|
if vision_tower is not None and (input_ids.shape[1] != 1 or self.training) and images is not None:
|
||
|
# TODO: this is a modified multimodal LLM -- Haotian Liu
|
||
|
vision_tower = vision_tower[0] # HACK: for FSDP
|
||
|
with torch.no_grad():
|
||
|
if type(images) is list:
|
||
|
# variable length images
|
||
|
image_features = []
|
||
|
for image in images:
|
||
|
image_forward_out = vision_tower(image.unsqueeze(0), output_hidden_states=True)
|
||
|
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
||
|
select_hidden_state = image_forward_out.hidden_states[select_hidden_state_layer]
|
||
|
image_feature = select_hidden_state[:, 1:]
|
||
|
image_features.append(image_feature)
|
||
|
else:
|
||
|
image_forward_outs = vision_tower(images, output_hidden_states=True)
|
||
|
select_hidden_state_layer = getattr(self.config, "mm_vision_select_layer", -1)
|
||
|
select_hidden_state = image_forward_outs.hidden_states[select_hidden_state_layer]
|
||
|
image_features = select_hidden_state[:, 1:]
|
||
|
if type(images) is list:
|
||
|
image_features = [self.mm_projector(image_feature)[0] for image_feature in image_features]
|
||
|
else:
|
||
|
image_features = self.mm_projector(image_features)
|
||
|
dummy_image_features = torch.zeros(256, 1024, device=inputs_embeds.device, dtype=inputs_embeds.dtype)
|
||
|
dummy_image_features = self.mm_projector(dummy_image_features)
|
||
|
|
||
|
new_input_embeds = []
|
||
|
cur_image_idx = 0
|
||
|
for cur_input_ids, cur_input_embeds in zip(input_ids, inputs_embeds):
|
||
|
if (cur_input_ids == vision_tower.config.im_patch_token).sum() == 0:
|
||
|
# multimodal LLM, but the current sample is not multimodal
|
||
|
cur_input_embeds = cur_input_embeds + (0. * dummy_image_features).sum()
|
||
|
new_input_embeds.append(cur_input_embeds)
|
||
|
continue
|
||
|
if vision_tower.config.use_im_start_end:
|
||
|
cur_image_features = image_features[cur_image_idx]
|
||
|
num_patches = cur_image_features.shape[0]
|
||
|
if (cur_input_ids == vision_tower.config.im_start_token).sum() != (cur_input_ids == vision_tower.config.im_end_token).sum():
|
||
|
raise ValueError("The number of image start tokens and image end tokens should be the same.")
|
||
|
image_start_tokens = torch.where(cur_input_ids == vision_tower.config.im_start_token)[0]
|
||
|
for image_start_token_pos in image_start_tokens:
|
||
|
cur_image_features = image_features[cur_image_idx].to(device=cur_input_embeds.device)
|
||
|
num_patches = cur_image_features.shape[0]
|
||
|
if cur_input_ids[image_start_token_pos + num_patches + 1] != vision_tower.config.im_end_token:
|
||
|
raise ValueError("The image end token should follow the image start token.")
|
||
|
if orig_embeds_params is not None:
|
||
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos].detach(), cur_input_embeds[image_start_token_pos:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:image_start_token_pos + num_patches + 2], cur_input_embeds[image_start_token_pos + num_patches + 2:].detach()), dim=0)
|
||
|
else:
|
||
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:image_start_token_pos+1], cur_image_features, cur_input_embeds[image_start_token_pos + num_patches + 1:]), dim=0)
|
||
|
cur_image_idx += 1
|
||
|
new_input_embeds.append(cur_new_input_embeds)
|
||
|
else:
|
||
|
cur_image_features = image_features[cur_image_idx]
|
||
|
num_patches = cur_image_features.shape[0]
|
||
|
if (cur_input_ids == vision_tower.config.im_patch_token).sum() != num_patches:
|
||
|
raise ValueError("The number of image patch tokens should be the same as the number of image patches.")
|
||
|
masked_indices = torch.where(cur_input_ids == vision_tower.config.im_patch_token)[0]
|
||
|
mask_index_start = masked_indices[0]
|
||
|
if (masked_indices != torch.arange(mask_index_start, mask_index_start+num_patches, device=masked_indices.device, dtype=masked_indices.dtype)).any():
|
||
|
raise ValueError("The image patch tokens should be consecutive.")
|
||
|
if orig_embeds_params is not None:
|
||
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start].detach(), cur_image_features, cur_input_embeds[mask_index_start+num_patches:].detach()), dim=0)
|
||
|
else:
|
||
|
cur_new_input_embeds = torch.cat((cur_input_embeds[:mask_index_start], cur_image_features, cur_input_embeds[mask_index_start+num_patches:]), dim=0)
|
||
|
new_input_embeds.append(cur_new_input_embeds)
|
||
|
inputs_embeds = torch.stack(new_input_embeds, dim=0)
|
||
|
|
||
|
return super(LlavaMPTModel, self).forward(input_ids=None, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, tok_emb=inputs_embeds)
|
||
|
|
||
|
|
||
|
class LlavaMPTForCausalLM(MPTForCausalLM):
|
||
|
config_class = LlavaMPTConfig
|
||
|
supports_gradient_checkpointing = True
|
||
|
|
||
|
def __init__(self, config):
|
||
|
super(MPTForCausalLM, self).__init__(config)
|
||
|
|
||
|
if not config.tie_word_embeddings:
|
||
|
raise ValueError('MPTForCausalLM only supports tied word embeddings')
|
||
|
self.transformer = LlavaMPTModel(config)
|
||
|
self.logit_scale = None
|
||
|
if config.logit_scale is not None:
|
||
|
logit_scale = config.logit_scale
|
||
|
if isinstance(logit_scale, str):
|
||
|
if logit_scale == 'inv_sqrt_d_model':
|
||
|
logit_scale = 1 / math.sqrt(config.d_model)
|
||
|
else:
|
||
|
raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.")
|
||
|
self.logit_scale = logit_scale
|
||
|
|
||
|
def get_model(self):
|
||
|
return self.transformer
|
||
|
|
||
|
def _set_gradient_checkpointing(self, module, value=False):
|
||
|
if isinstance(module, LlavaMPTModel):
|
||
|
module.gradient_checkpointing = value
|
||
|
|
||
|
def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None):
|
||
|
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||
|
outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache, images=images)
|
||
|
logits = F.linear(outputs.last_hidden_state, self.transformer.wte.weight)
|
||
|
if self.logit_scale is not None:
|
||
|
if self.logit_scale == 0:
|
||
|
warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.')
|
||
|
logits *= self.logit_scale
|
||
|
loss = None
|
||
|
if labels is not None:
|
||
|
labels = torch.roll(labels, shifts=-1)
|
||
|
labels[:, -1] = -100
|
||
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1))
|
||
|
return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states)
|
||
|
|
||
|
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
||
|
if inputs_embeds is not None:
|
||
|
raise NotImplementedError('inputs_embeds is not implemented for MPT yet')
|
||
|
attention_mask = kwargs['attention_mask'].bool()
|
||
|
if attention_mask[:, -1].sum() != attention_mask.shape[0]:
|
||
|
raise NotImplementedError('MPT does not support generation with right padding.')
|
||
|
if self.transformer.attn_uses_sequence_id and self.training:
|
||
|
sequence_id = torch.zeros_like(input_ids[:1])
|
||
|
else:
|
||
|
sequence_id = None
|
||
|
if past_key_values is not None:
|
||
|
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||
|
if self.transformer.prefix_lm:
|
||
|
prefix_mask = torch.ones_like(attention_mask)
|
||
|
if kwargs.get('use_cache') == False:
|
||
|
raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.')
|
||
|
else:
|
||
|
prefix_mask = None
|
||
|
return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), "images": kwargs.get("images", None)}
|
||
|
|
||
|
def initialize_vision_tokenizer(self, mm_use_im_start_end, tokenizer, device,
|
||
|
tune_mm_mlp_adapter=False, pretrain_mm_mlp_adapter=None):
|
||
|
vision_config = self.get_model().vision_tower[0].config
|
||
|
vision_config.use_im_start_end = mm_use_im_start_end
|
||
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||
|
self.resize_token_embeddings(len(tokenizer))
|
||
|
|
||
|
if mm_use_im_start_end:
|
||
|
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||
|
self.resize_token_embeddings(len(tokenizer))
|
||
|
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||
|
|
||
|
if num_new_tokens > 0:
|
||
|
input_embeddings = self.get_input_embeddings().weight.data
|
||
|
output_embeddings = self.get_output_embeddings().weight.data
|
||
|
|
||
|
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
||
|
dim=0, keepdim=True)
|
||
|
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
||
|
dim=0, keepdim=True)
|
||
|
|
||
|
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
||
|
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
||
|
|
||
|
if tune_mm_mlp_adapter:
|
||
|
self.get_model().orig_embeds_params = [self.get_input_embeddings().weight.data.clone().to(device=device)]
|
||
|
for p in self.get_input_embeddings().parameters():
|
||
|
p.requires_grad = True
|
||
|
for p in self.get_output_embeddings().parameters():
|
||
|
p.requires_grad = False
|
||
|
|
||
|
if pretrain_mm_mlp_adapter:
|
||
|
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
||
|
embed_tokens_weight = mm_projector_weights['transformer.wte.weight']
|
||
|
assert num_new_tokens == 2
|
||
|
if input_embeddings.shape == embed_tokens_weight.shape:
|
||
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
||
|
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
||
|
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
||
|
else:
|
||
|
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
||
|
|
||
|
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||
|
|
||
|
AutoConfig.register("llava_mpt", LlavaMPTConfig)
|
||
|
AutoModelForCausalLM.register(LlavaMPTConfig, LlavaMPTForCausalLM)
|