208 lines
8.8 KiB
Python
208 lines
8.8 KiB
Python
![]() |
import argparse
|
||
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig
|
||
|
import torch
|
||
|
import os
|
||
|
import json
|
||
|
from tqdm import tqdm
|
||
|
import shortuuid
|
||
|
|
||
|
from llava import LlavaLlamaForCausalLM
|
||
|
from llava.conversation import conv_templates
|
||
|
from llava.utils import disable_torch_init
|
||
|
from transformers import CLIPVisionModel, CLIPImageProcessor, StoppingCriteria
|
||
|
|
||
|
from PIL import Image
|
||
|
import random
|
||
|
import math
|
||
|
|
||
|
|
||
|
def split_list(lst, n):
|
||
|
"""Split a list into n (roughly) equal-sized chunks"""
|
||
|
chunk_size = math.ceil(len(lst) / n) # integer division
|
||
|
return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)]
|
||
|
|
||
|
|
||
|
def get_chunk(lst, n, k):
|
||
|
chunks = split_list(lst, n)
|
||
|
return chunks[k]
|
||
|
|
||
|
|
||
|
DEFAULT_IMAGE_TOKEN = "<image>"
|
||
|
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
||
|
DEFAULT_IM_START_TOKEN = "<im_start>"
|
||
|
DEFAULT_IM_END_TOKEN = "<im_end>"
|
||
|
|
||
|
|
||
|
def patch_config(config):
|
||
|
patch_dict = {
|
||
|
"use_mm_proj": True,
|
||
|
"mm_vision_tower": "openai/clip-vit-large-patch14",
|
||
|
"mm_hidden_size": 1024
|
||
|
}
|
||
|
|
||
|
cfg = AutoConfig.from_pretrained(config)
|
||
|
if not hasattr(cfg, "mm_vision_tower"):
|
||
|
print(f'`mm_vision_tower` not found in `{config}`, applying patch and save to disk.')
|
||
|
for k, v in patch_dict.items():
|
||
|
setattr(cfg, k, v)
|
||
|
cfg.save_pretrained(config)
|
||
|
|
||
|
|
||
|
def eval_model(args):
|
||
|
# Model
|
||
|
disable_torch_init()
|
||
|
model_name = os.path.expanduser(args.model_name)
|
||
|
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||
|
if args.mm_projector is None:
|
||
|
patch_config(model_name)
|
||
|
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda()
|
||
|
image_processor = CLIPImageProcessor.from_pretrained(model.config.mm_vision_tower, torch_dtype=torch.float16)
|
||
|
|
||
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||
|
if mm_use_im_start_end:
|
||
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||
|
|
||
|
vision_tower = model.model.vision_tower[0]
|
||
|
vision_tower.to(device='cuda', dtype=torch.float16)
|
||
|
vision_config = vision_tower.config
|
||
|
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||
|
vision_config.use_im_start_end = mm_use_im_start_end
|
||
|
if mm_use_im_start_end:
|
||
|
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||
|
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
||
|
else:
|
||
|
# in case of using a pretrained model with only a MLP projector weights
|
||
|
model = LlavaLlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16).cuda()
|
||
|
|
||
|
vision_tower = CLIPVisionModel.from_pretrained(args.vision_tower, torch_dtype=torch.float16).cuda()
|
||
|
image_processor = CLIPImageProcessor.from_pretrained(args.vision_tower, torch_dtype=torch.float16)
|
||
|
|
||
|
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
||
|
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
||
|
if mm_use_im_start_end:
|
||
|
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
||
|
|
||
|
vision_config = vision_tower.config
|
||
|
vision_config.im_patch_token = tokenizer.convert_tokens_to_ids([DEFAULT_IMAGE_PATCH_TOKEN])[0]
|
||
|
vision_config.use_im_start_end = mm_use_im_start_end
|
||
|
if mm_use_im_start_end:
|
||
|
vision_config.im_start_token, vision_config.im_end_token = tokenizer.convert_tokens_to_ids([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN])
|
||
|
|
||
|
image_token_len = (vision_config.image_size // vision_config.patch_size) ** 2
|
||
|
|
||
|
mm_projector = torch.nn.Linear(vision_config.hidden_size, model.config.hidden_size)
|
||
|
mm_projector_weights = torch.load(args.mm_projector, map_location='cpu')
|
||
|
mm_projector.load_state_dict({k.split('.')[-1]: v for k, v in mm_projector_weights.items()})
|
||
|
|
||
|
model.model.mm_projector = mm_projector.cuda().half()
|
||
|
model.model.vision_tower = [vision_tower]
|
||
|
|
||
|
questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")]
|
||
|
questions = get_chunk(questions, args.num_chunks, args.chunk_idx)
|
||
|
answers_file = os.path.expanduser(args.answers_file)
|
||
|
os.makedirs(os.path.dirname(answers_file), exist_ok=True)
|
||
|
ans_file = open(answers_file, "w")
|
||
|
for i, line in enumerate(tqdm(questions)):
|
||
|
idx = line["question_id"]
|
||
|
image_file = line["image"]
|
||
|
qs = line["text"]
|
||
|
cur_prompt = qs
|
||
|
if mm_use_im_start_end:
|
||
|
qs = qs + '\n' + DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len + DEFAULT_IM_END_TOKEN
|
||
|
else:
|
||
|
qs = qs + '\n' + DEFAULT_IMAGE_PATCH_TOKEN * image_token_len
|
||
|
|
||
|
if args.conv_mode == 'simple_legacy':
|
||
|
qs += '\n\n### Response:'
|
||
|
# conv = default_conversation.copy()
|
||
|
conv = conv_templates[args.conv_mode].copy()
|
||
|
conv.append_message(conv.roles[0], qs)
|
||
|
prompt = conv.get_prompt()
|
||
|
inputs = tokenizer([prompt])
|
||
|
|
||
|
image = Image.open(os.path.join(args.image_folder, image_file))
|
||
|
# image.save(os.path.join(save_image_folder, image_file))
|
||
|
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
||
|
|
||
|
input_ids = torch.as_tensor(inputs.input_ids).cuda()
|
||
|
|
||
|
# new stopping implementation
|
||
|
class KeywordsStoppingCriteria(StoppingCriteria):
|
||
|
def __init__(self, keywords, tokenizer, input_ids):
|
||
|
self.keywords = keywords
|
||
|
self.tokenizer = tokenizer
|
||
|
self.start_len = None
|
||
|
self.input_ids = input_ids
|
||
|
|
||
|
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
||
|
if self.start_len is None:
|
||
|
self.start_len = self.input_ids.shape[1]
|
||
|
else:
|
||
|
outputs = self.tokenizer.batch_decode(output_ids[:, self.start_len:], skip_special_tokens=True)[0]
|
||
|
for keyword in self.keywords:
|
||
|
if keyword in outputs:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
keywords = ['###']
|
||
|
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||
|
|
||
|
with torch.inference_mode():
|
||
|
output_ids = model.generate(
|
||
|
input_ids,
|
||
|
images=image_tensor.unsqueeze(0).half().cuda(),
|
||
|
do_sample=True,
|
||
|
temperature=0.7,
|
||
|
max_new_tokens=1024,
|
||
|
stopping_criteria=[stopping_criteria])
|
||
|
|
||
|
input_token_len = input_ids.shape[1]
|
||
|
n_diff_input_output = (input_ids != output_ids[:, :input_token_len]).sum().item()
|
||
|
if n_diff_input_output > 0:
|
||
|
print(f'[Warning] Sample {i}: {n_diff_input_output} output_ids are not the same as the input_ids')
|
||
|
outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True)[0]
|
||
|
|
||
|
if args.conv_mode == 'simple_legacy' or args.conv_mode == 'simple':
|
||
|
while True:
|
||
|
cur_len = len(outputs)
|
||
|
outputs = outputs.strip()
|
||
|
for pattern in ['###', 'Assistant:', 'Response:']:
|
||
|
if outputs.startswith(pattern):
|
||
|
outputs = outputs[len(pattern):].strip()
|
||
|
if len(outputs) == cur_len:
|
||
|
break
|
||
|
|
||
|
try:
|
||
|
index = outputs.index(conv.sep)
|
||
|
except ValueError:
|
||
|
outputs += conv.sep
|
||
|
index = outputs.index(conv.sep)
|
||
|
|
||
|
outputs = outputs[:index].strip()
|
||
|
|
||
|
ans_id = shortuuid.uuid()
|
||
|
ans_file.write(json.dumps({"question_id": idx,
|
||
|
"prompt": cur_prompt,
|
||
|
"text": outputs,
|
||
|
"answer_id": ans_id,
|
||
|
"model_id": model_name,
|
||
|
"metadata": {}}) + "\n")
|
||
|
ans_file.flush()
|
||
|
ans_file.close()
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--model-name", type=str, default="facebook/opt-350m")
|
||
|
parser.add_argument("--image-folder", type=str, default="")
|
||
|
parser.add_argument("--question-file", type=str, default="tables/question.jsonl")
|
||
|
parser.add_argument("--answers-file", type=str, default="answer.jsonl")
|
||
|
parser.add_argument("--mm-projector", type=str, default=None)
|
||
|
parser.add_argument("--vision-tower", type=str, default=None)
|
||
|
parser.add_argument("--conv-mode", type=str, default="simple")
|
||
|
parser.add_argument("--num-chunks", type=int, default=1)
|
||
|
parser.add_argument("--chunk-idx", type=int, default=0)
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
eval_model(args)
|