209 lines
8.6 KiB
Python
209 lines
8.6 KiB
Python
![]() |
import re
|
||
|
|
||
|
import torch
|
||
|
import torch.utils.checkpoint
|
||
|
|
||
|
from transformers.processing_utils import ProcessorMixin
|
||
|
from transformers.tokenization_utils_base import BatchEncoding
|
||
|
from transformers.models.clip.image_processing_clip import CLIPImageProcessor
|
||
|
|
||
|
|
||
|
media_token = ({"image": ("<image>", 65)},)
|
||
|
|
||
|
|
||
|
class MplugOwlProcessor(ProcessorMixin):
|
||
|
attributes = []
|
||
|
tokenizer_class = ("MplugOwlTokenizer")
|
||
|
|
||
|
def __init__(self, image_processor=None, tokenizer=None, **kwargs):
|
||
|
super().__init__(**kwargs)
|
||
|
self.tokens_to_generate = 0
|
||
|
self.image_processor = image_processor
|
||
|
self.tokenizer = tokenizer
|
||
|
self.add_BOS = True
|
||
|
|
||
|
def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
|
||
|
if text is None and images is None:
|
||
|
raise ValueError("You have to specify either text or images. Both cannot be none.")
|
||
|
|
||
|
if text is not None:
|
||
|
encoding = tokenize_prompts(
|
||
|
prompts=text,
|
||
|
tokens_to_generate=self.tokens_to_generate,
|
||
|
add_BOS=self.add_BOS,
|
||
|
tokenizer=self.tokenizer,
|
||
|
ignore_dist=True,
|
||
|
**kwargs,
|
||
|
)
|
||
|
# encoding = self.tokenizer(text, return_tensors=return_tensors, **kwargs)
|
||
|
|
||
|
if images is not None:
|
||
|
image_features = self.image_processor(images, return_tensors=return_tensors, **kwargs)
|
||
|
|
||
|
if text is not None and images is not None:
|
||
|
encoding["pixel_values"] = image_features.pixel_values
|
||
|
return BatchEncoding(data=encoding)
|
||
|
elif text is not None:
|
||
|
return BatchEncoding(data=encoding)
|
||
|
else:
|
||
|
return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
|
||
|
|
||
|
def batch_decode(self, skip_special_tokens=True, *args, **kwargs):
|
||
|
"""
|
||
|
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
||
|
refer to the docstring of this method for more information.
|
||
|
"""
|
||
|
return self.tokenizer.batch_decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
|
||
|
|
||
|
def decode(self, skip_special_tokens=True, *args, **kwargs):
|
||
|
"""
|
||
|
This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
||
|
the docstring of this method for more information.
|
||
|
"""
|
||
|
return self.tokenizer.decode(*args, skip_special_tokens=skip_special_tokens, **kwargs)
|
||
|
|
||
|
|
||
|
class MplugOwlImageProcessor(CLIPImageProcessor):
|
||
|
pass
|
||
|
|
||
|
|
||
|
def detokenize_generations(tokens_gpu_tensor, lengths_gpu_tensor, return_segments, tokenizer):
|
||
|
"""Detokenize the generated tokens."""
|
||
|
|
||
|
prompts_plus_generations = []
|
||
|
if return_segments:
|
||
|
prompts_plus_generations_segments = []
|
||
|
|
||
|
tokens = tokens_gpu_tensor.cpu().numpy().tolist()
|
||
|
lengths = lengths_gpu_tensor.cpu().numpy().tolist()
|
||
|
for sequence_tokens, length in zip(tokens, lengths):
|
||
|
sequence_tokens = sequence_tokens[:length]
|
||
|
prompts_plus_generations.append(tokenizer.detokenize(sequence_tokens))
|
||
|
if return_segments:
|
||
|
from tokenizers.decoders import Metaspace
|
||
|
|
||
|
if hasattr(tokenizer, "tokenizer"):
|
||
|
if isinstance(tokenizer.tokenizer.decoder, Metaspace):
|
||
|
words = tokenizer.tokenizer.decode(sequence_tokens)
|
||
|
else:
|
||
|
words = []
|
||
|
for token in sequence_tokens:
|
||
|
word = tokenizer.tokenizer.decoder[token]
|
||
|
word = bytearray([tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
|
||
|
"utf-8", errors="replace"
|
||
|
)
|
||
|
words.append(word)
|
||
|
prompts_plus_generations_segments.append(words)
|
||
|
else:
|
||
|
words = tokenizer.detokenize(sequence_tokens)
|
||
|
# else:
|
||
|
# words = []
|
||
|
# for token in sequence_tokens:
|
||
|
# word = tokenizer.tokenizer.decoder[token]
|
||
|
# word = bytearray(
|
||
|
# [tokenizer.tokenizer.byte_decoder[c] for c in word]).decode(
|
||
|
# 'utf-8', errors='replace')
|
||
|
# words.append(word)
|
||
|
prompts_plus_generations_segments.append(words)
|
||
|
|
||
|
if return_segments:
|
||
|
return tokens, prompts_plus_generations, prompts_plus_generations_segments
|
||
|
|
||
|
return tokens, prompts_plus_generations
|
||
|
|
||
|
|
||
|
def tokenize_prompts(
|
||
|
prompts=None, tokens_to_generate=None, add_BOS=None, rank=0, tokenizer=None, ignore_dist=False, **kwargs
|
||
|
):
|
||
|
"""Tokenize prompts and make them avaiable on all ranks."""
|
||
|
|
||
|
# On all ranks set to None so we can pass them to functions
|
||
|
prompts_tokens_cuda_long_tensor = None
|
||
|
prompts_length_cuda_long_tensor = None
|
||
|
|
||
|
# On the specified rank, build the above.
|
||
|
attention_mask = None
|
||
|
if ignore_dist or torch.distributed.get_rank() == rank:
|
||
|
assert prompts is not None
|
||
|
assert tokens_to_generate is not None
|
||
|
# Tensor of tokens padded and their unpadded length.
|
||
|
prompts_tokens_cuda_long_tensor, prompts_length_cuda_long_tensor, attention_mask = _tokenize_prompts_and_batch(
|
||
|
prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs
|
||
|
)
|
||
|
|
||
|
return {
|
||
|
"input_ids": prompts_tokens_cuda_long_tensor,
|
||
|
"attention_mask": attention_mask,
|
||
|
# "prompt_length": prompts_length_cuda_long_tensor,
|
||
|
}
|
||
|
|
||
|
|
||
|
def _tokenize_prompts_and_batch(prompts, tokens_to_generate, add_BOS, tokenizer, **kwargs):
|
||
|
"""Given a set of prompts and number of tokens to generate:
|
||
|
- tokenize prompts
|
||
|
- set the sequence length to be the max of length of prompts plus the number of tokens we would like to generate
|
||
|
- pad all the sequences to this length so we can convert them into a 2D tensor.
|
||
|
"""
|
||
|
|
||
|
# Tokenize all the prompts.
|
||
|
# if add_BOS:
|
||
|
# prompts_tokens = [[tokenizer.bos] + tokenizer.tokenize(prompt)
|
||
|
# for prompt in prompts]
|
||
|
# else:
|
||
|
# prompts_tokens = [tokenizer.tokenize(prompt) for prompt in prompts]
|
||
|
|
||
|
prompts_tokens = [_tokenize_prompt(prompt, tokenizer, add_BOS, **kwargs) for prompt in prompts]
|
||
|
|
||
|
# Now we have a list of list of tokens which each list has a different
|
||
|
# size. We want to extend this list to:
|
||
|
# - incorporate the tokens that need to be generated
|
||
|
# - make all the sequences equal length.
|
||
|
# Get the prompts length.
|
||
|
prompts_length = [len(prompt_tokens) for prompt_tokens in prompts_tokens]
|
||
|
# Get the max prompts length.
|
||
|
max_prompt_len = max(prompts_length)
|
||
|
# Number of tokens in the each sample of the batch.
|
||
|
samples_length = max_prompt_len + tokens_to_generate
|
||
|
# Now update the list of list to be of the same size: samples_length.
|
||
|
for prompt_tokens, prompt_length in zip(prompts_tokens, prompts_length):
|
||
|
padding_size = samples_length - prompt_length
|
||
|
prompt_tokens.extend([tokenizer.eos_token_id] * padding_size)
|
||
|
|
||
|
# Now we are in a structured format, we can convert to tensors.
|
||
|
prompts_tokens_tensor = torch.LongTensor(prompts_tokens)
|
||
|
prompts_length_tensor = torch.LongTensor(prompts_length)
|
||
|
attention_mask = torch.zeros(prompts_tokens_tensor.shape[:2])
|
||
|
for i, l in enumerate(prompts_length_tensor):
|
||
|
attention_mask[i, :l] = 1
|
||
|
return prompts_tokens_tensor, prompts_length_tensor, attention_mask
|
||
|
|
||
|
|
||
|
def _tokenize_prompt(prompt, tokenizer, add_BOS=False, media_info={"<image>": 65}, **kwargs):
|
||
|
media_tokens = {k: -int(i + 1) for i, k in enumerate(media_info.keys())}
|
||
|
media_lengths = media_info.copy()
|
||
|
|
||
|
if add_BOS:
|
||
|
prompt_chunk = [tokenizer.bos_token_id]
|
||
|
else:
|
||
|
prompt_chunk = []
|
||
|
|
||
|
# Pure Text
|
||
|
if all([media_token not in prompt for media_token in media_tokens.keys()]):
|
||
|
enc_chunk = prompt_chunk + tokenizer(prompt, add_special_tokens=False, **kwargs)["input_ids"]
|
||
|
|
||
|
# Multi-Modal Text
|
||
|
else:
|
||
|
enc_chunk = prompt_chunk
|
||
|
pattern = "|".join(map(re.escape, list(media_tokens.keys())))
|
||
|
chunk_strs = re.split(f"({pattern})", prompt)
|
||
|
chunk_strs = [x for x in chunk_strs if len(x) > 0]
|
||
|
for idx, chunk_str in enumerate(chunk_strs):
|
||
|
if chunk_str in media_tokens:
|
||
|
enc_chunk += [media_tokens[chunk_str]] * media_lengths[chunk_str]
|
||
|
else:
|
||
|
tmp_chunk = tokenizer(chunk_str, add_special_tokens=False)["input_ids"]
|
||
|
# if idx < len(chunk_strs) - 1: # Last chunk should not have eos
|
||
|
# tmp_chunk += [tokenizer.eod_id]
|
||
|
enc_chunk += tmp_chunk
|
||
|
return enc_chunk
|