156 lines
6.0 KiB
Python
156 lines
6.0 KiB
Python
![]() |
import math
|
||
|
import random
|
||
|
import torch
|
||
|
import numpy as np
|
||
|
from icecream import ic
|
||
|
|
||
|
def print_rank_0(message):
|
||
|
"""If distributed is initialized, print only on rank 0."""
|
||
|
if torch.distributed.is_initialized():
|
||
|
if torch.distributed.get_rank() == 0:
|
||
|
print(message, flush=True)
|
||
|
else:
|
||
|
print(message, flush=True)
|
||
|
|
||
|
ARGS = None
|
||
|
def set_args(args):
|
||
|
global ARGS
|
||
|
ARGS = args
|
||
|
|
||
|
def get_args():
|
||
|
return ARGS
|
||
|
|
||
|
TOKENIZER = None
|
||
|
def set_tokenizer(tokenizer):
|
||
|
global TOKENIZER
|
||
|
TOKENIZER = tokenizer
|
||
|
|
||
|
def get_tokenizer():
|
||
|
return TOKENIZER
|
||
|
from torch import distributed as dist
|
||
|
|
||
|
class worker_init:
|
||
|
def __init__(self, epoch_id):
|
||
|
self.epoch_id = epoch_id
|
||
|
def _worker_init_fn(self, worker_id):
|
||
|
random.seed(worker_id + self.epoch_id*1e4 + dist.get_rank()*1e8)
|
||
|
|
||
|
|
||
|
def batchify(batch):
|
||
|
# collate_fn
|
||
|
# image = torch.cat([data["image"] for data in batch], dim=0)
|
||
|
image = [data["image"] if data["image"] is not None else None for data in batch]
|
||
|
if all([img is None for img in image]):
|
||
|
image = None
|
||
|
else:
|
||
|
image = torch.cat([img for img in image if img is not None], dim=0)
|
||
|
num_images_per_sample = torch.LongTensor([data["image"].size(0) if data['image'] is not None else 0 for data in batch])
|
||
|
|
||
|
text = torch.stack([torch.LongTensor(data["text"]['input_ids']) for data in batch], dim=0)
|
||
|
non_padding_mask = torch.stack([torch.LongTensor(data["text"]['non_padding_mask']) for data in batch], dim=0)
|
||
|
non_media_mask = torch.stack([torch.LongTensor(data["text"]['non_media_mask']) for data in batch], dim=0)
|
||
|
prompt_mask = torch.stack([torch.LongTensor(data["text"]['prompt_mask']) for data in batch], dim=0)
|
||
|
prompt_length = torch.from_numpy(np.stack([data["text"]["prompt_length"] for data in batch]))
|
||
|
seq_length = torch.from_numpy(np.stack([data["text"]["seq_length"] for data in batch]))
|
||
|
|
||
|
output_batch = {
|
||
|
"pixel_values": image,
|
||
|
"input_ids": text.long(),
|
||
|
"labels": text.long().clone(),
|
||
|
"num_images": num_images_per_sample.long(),
|
||
|
"non_padding_mask": non_padding_mask.long(),
|
||
|
"non_media_mask": non_media_mask.long(),
|
||
|
"prompt_mask": prompt_mask.long()
|
||
|
}
|
||
|
return output_batch
|
||
|
|
||
|
|
||
|
def get_param_groups(modules,
|
||
|
no_weight_decay_cond,
|
||
|
scale_lr_cond,
|
||
|
lr_mult):
|
||
|
"""creates param groups based on weight decay condition (regularized vs non regularized)
|
||
|
and learning rate scale condition (args.lr vs lr_mult * args.lr)
|
||
|
scale_lr_cond is used during finetuning where head of the network requires a scaled
|
||
|
version of the base learning rate.
|
||
|
"""
|
||
|
wd_no_scale_lr = []
|
||
|
wd_scale_lr = []
|
||
|
no_wd_no_scale_lr = []
|
||
|
no_wd_scale_lr = []
|
||
|
for module in modules:
|
||
|
for name, param in module.named_parameters():
|
||
|
if not param.requires_grad:
|
||
|
continue
|
||
|
|
||
|
if no_weight_decay_cond is not None:
|
||
|
no_wd = no_weight_decay_cond(name, param)
|
||
|
else:
|
||
|
# do not regularize biases nor Norm parameters
|
||
|
no_wd = name.endswith(".bias") or len(param.shape) == 1
|
||
|
|
||
|
if scale_lr_cond is not None:
|
||
|
scale_lr = scale_lr_cond(name, param)
|
||
|
else:
|
||
|
scale_lr = False
|
||
|
|
||
|
if not no_wd and not scale_lr:
|
||
|
wd_no_scale_lr.append(param)
|
||
|
elif not no_wd and scale_lr:
|
||
|
wd_scale_lr.append(param)
|
||
|
elif no_wd and not scale_lr:
|
||
|
no_wd_no_scale_lr.append(param)
|
||
|
else:
|
||
|
no_wd_scale_lr.append(param)
|
||
|
|
||
|
param_groups = []
|
||
|
if len(wd_no_scale_lr):
|
||
|
param_groups.append(
|
||
|
{'params': wd_no_scale_lr, 'wd_mult': 1.0, 'lr_mult': 1.0})
|
||
|
if len(wd_scale_lr):
|
||
|
param_groups.append(
|
||
|
{'params': wd_scale_lr, 'wd_mult': 1.0, 'lr_mult': lr_mult})
|
||
|
if len(no_wd_no_scale_lr):
|
||
|
param_groups.append({'params': no_wd_no_scale_lr,
|
||
|
'wd_mult': 0.0, 'lr_mult': 1.0})
|
||
|
if len(no_wd_scale_lr):
|
||
|
param_groups.append(
|
||
|
{'params': no_wd_scale_lr, 'wd_mult': 0.0, 'lr_mult': lr_mult})
|
||
|
|
||
|
return param_groups
|
||
|
|
||
|
def get_cosine_schedule_with_warmup(
|
||
|
optimizer, lr, min_lr, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
|
||
|
):
|
||
|
"""
|
||
|
Create a schedule with a learning rate that decreases following the values of the cosine function between the
|
||
|
initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
|
||
|
initial lr set in the optimizer.
|
||
|
|
||
|
Args:
|
||
|
optimizer ([`~torch.optim.Optimizer`]):
|
||
|
The optimizer for which to schedule the learning rate.
|
||
|
num_warmup_steps (`int`):
|
||
|
The number of steps for the warmup phase.
|
||
|
num_training_steps (`int`):
|
||
|
The total number of training steps.
|
||
|
num_cycles (`float`, *optional*, defaults to 0.5):
|
||
|
The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
|
||
|
following a half-cosine).
|
||
|
last_epoch (`int`, *optional*, defaults to -1):
|
||
|
The index of the last epoch when resuming training.
|
||
|
|
||
|
Return:
|
||
|
`torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
|
||
|
"""
|
||
|
|
||
|
delta_min_lr = (lr-min_lr)/lr # 0.95
|
||
|
|
||
|
def lr_lambda(current_step):
|
||
|
if current_step < num_warmup_steps:
|
||
|
return (1-delta_min_lr) + delta_min_lr * float(current_step) / float(max(1, num_warmup_steps))
|
||
|
progress = float(current_step - num_warmup_steps) / \
|
||
|
float(max(1, num_training_steps - num_warmup_steps))
|
||
|
return delta_min_lr + (1-delta_min_lr) * max(0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))
|
||
|
from torch.optim.lr_scheduler import LambdaLR
|
||
|
return LambdaLR(optimizer, lr_lambda, last_epoch)
|